Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 15: 1410564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007148

RESUMEN

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Asunto(s)
Inmunoterapia , Ligando OX40 , Animales , Ligando OX40/genética , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Femenino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferencia de Gen , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microambiente Tumoral/inmunología , Polietileneimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Polietilenglicoles/química
2.
Front Mol Biosci ; 10: 1111511, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825204

RESUMEN

Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.

3.
Front Immunol ; 14: 1099921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006265

RESUMEN

Treatment of metastatic disease remains among the most challenging tasks in oncology. One of the early events that predicts a poor prognosis and precedes the development of metastasis is the occurrence of clusters of cancer cells in the blood flow. Moreover, the presence of heterogeneous clusters of cancerous and noncancerous cells in the circulation is even more dangerous. Review of pathological mechanisms and biological molecules directly involved in the formation and pathogenesis of the heterotypic circulating tumor cell (CTC) clusters revealed their common properties, which include increased adhesiveness, combined epithelial-mesenchymal phenotype, CTC-white blood cell interaction, and polyploidy. Several molecules involved in the heterotypic CTC interactions and their metastatic properties, including IL6R, CXCR4 and EPCAM, are targets of approved or experimental anticancer drugs. Accordingly, analysis of patient survival data from the published literature and public datasets revealed that the expression of several molecules affecting the formation of CTC clusters predicts patient survival in multiple cancer types. Thus, targeting of molecules involved in CTC heterotypic interactions might be a valuable strategy for the treatment of metastatic cancers.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Oncología Médica
4.
Biotechniques ; 63(3): 107-116, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911314

RESUMEN

Gene therapy is a fast-developing field of molecular medicine. New, effective, and cancer-specific promoters are in high demand by researchers seeking to treat cancer through expression of therapeutic genes. Here, we created a combinatorial library of tumor-specific chimeric promoter modules for identifying new promoters with desired functions. The library was constructed by randomly combining promoter fragments from eight human genes involved in cell proliferation control. The pool of chimeric promoters was inserted into a lentiviral expression vector upstream of the CopGFP reporter gene, transduced into A431 cells, and enriched for active promoters by cell sorting. The enriched library contained a remarkably high proportion of active and tumor-specific promoters. This approach to generating combinatorial libraries of chimeric promoters may serve as a useful tool for selecting highly specific and effective promoters for cancer research and gene therapy.


Asunto(s)
Proliferación Celular/genética , Biblioteca de Genes , Terapia Genética/métodos , Neoplasias/genética , Neoplasias/terapia , Regiones Promotoras Genéticas/genética , Línea Celular Tumoral , Fibroblastos/citología , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Cultivo Primario de Células , Transfección
5.
BMC Res Notes ; 5: 178, 2012 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-22480385

RESUMEN

BACKGROUND: Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. RESULTS: Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. CONCLUSIONS: We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Células CHO , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cricetinae , Cricetulus , Citomegalovirus/genética , ADN/genética , Proteínas de Unión al ADN/genética , Ganciclovir/farmacología , Regulación de la Expresión Génica , Humanos , Neomicina/farmacología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/genética , Simplexvirus/enzimología , Simplexvirus/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA