Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 93, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654335

RESUMEN

BACKGROUND: The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individuals and between health and disease states. However, study-to-study heterogeneity in reported case-control results has made the identification of consistent and generalizable URT-disease associations difficult. RESULTS: In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets from case-control URT studies, with approximately 2-3 studies per respiratory condition and ten distinct conditions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across studies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations from health and disease states. CONCLUSIONS: We found several robust genus-level associations, across multiple independent studies, with either health or disease status. We identified disease associations specific to a particular respiratory condition and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, health, and disease, which hold across multiple studies and can help guide follow-up work on potential URT microbiome diagnostics and therapeutics.


Asunto(s)
Microbiota , ARN Ribosómico 16S , Sistema Respiratorio , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Enfermedades Respiratorias/microbiología , Estudios de Casos y Controles , Masculino , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Femenino
2.
Methods ; 149: 59-68, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29704665

RESUMEN

Multi-omic data and genome-scale microbial metabolic models have allowed us to examine microbial communities, community function, and interactions in ways that were not available to us historically. Now, one of our biggest challenges is determining how to integrate data and maximize data potential. Our study demonstrates one way in which to test a hypothesis by combining multi-omic data and community metabolic models. Specifically, we assess hydrogen sulfide production in colorectal cancer based on stool, mucosa, and tissue samples collected on and off the tumor site within the same individuals. 16S rRNA microbial community and abundance data were used to select and inform the metabolic models. We then used MICOM, an open source platform, to track the metabolic flux of hydrogen sulfide through a defined microbial community that either represented on-tumor or off-tumor sample communities. We also performed targeted and untargeted metabolomics, and used the former to quantitatively evaluate our model predictions. A deeper look at the models identified several unexpected but feasible reactions, microbes, and microbial interactions involved in hydrogen sulfide production for which our 16S and metabolomic data could not account. These results will guide future in vitro, in vivo, and in silico tests to establish why hydrogen sulfide production is increased in tumor tissue.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mucosa Intestinal/metabolismo , Metabolómica/métodos , Microbiota/fisiología , Modelos Biológicos , Adulto , Anciano , Anciano de 80 o más Años , Clostridium perfringens/metabolismo , Neoplasias Colorrectales/microbiología , Femenino , Fusobacterium nucleatum/metabolismo , Humanos , Mucosa Intestinal/microbiología , Masculino , Persona de Mediana Edad , Adulto Joven
3.
PLoS Comput Biol ; 12(4): e1004786, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27096600

RESUMEN

Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.


Asunto(s)
Diseño de Fármacos , Péptidos/química , Ingeniería de Proteínas/métodos , Algoritmos , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/fisiología , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/fisiología , Células Cultivadas , Biología Computacional , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Aprendizaje Automático , Ratones , Modelos Estadísticos , Datos de Secuencia Molecular , Señales de Localización Nuclear , Péptidos/genética , Péptidos/fisiología , Unión Proteica , Ingeniería de Proteínas/estadística & datos numéricos , Estructura Secundaria de Proteína
4.
J Biol Chem ; 289(21): 14448-57, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24706763

RESUMEN

Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos/farmacología , Algoritmos , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacocinética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Endocitosis/genética , Células HEK293 , Humanos , Cinética , Factor de Apareamiento , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Péptidos/química , Péptidos/farmacocinética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
PLoS Comput Biol ; 10(6): e1003690, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24967739

RESUMEN

Communication between cells is a ubiquitous feature of cell populations and is frequently realized by secretion and detection of signaling molecules. Direct visualization of the resulting complex gradients between secreting and receiving cells is often impossible due to the small size of diffusing molecules and because such visualization requires experimental perturbations such as attachment of fluorescent markers, which can change diffusion properties. We designed a method to estimate such extracellular concentration profiles in vivo by using spatiotemporal mathematical models derived from microscopic analysis. This method is applied to populations of thousands of haploid yeast cells during mating in order to quantify the extracellular distributions of the pheromone α-factor and the activity of the aspartyl protease Bar1. We demonstrate that Bar1 limits the range of the extracellular pheromone signal and is critical in establishing α-factor concentration gradients, which is crucial for effective mating. Moreover, haploid populations of wild type yeast cells, but not BAR1 deletion strains, create a pheromone pattern in which cells differentially grow and mate, with low pheromone regions where cells continue to bud and regions with higher pheromone levels and gradients where cells conjugate to form diploids. However, this effect seems to be exclusive to high-density cultures. Our results show a new role of Bar1 protease regulating the pheromone distribution within larger populations and not only locally inside an ascus or among few cells. As a consequence, wild type populations have not only higher mating efficiency, but also higher growth rates than mixed MATa bar1Δ/MATα cultures. We provide an explanation of how a rapidly diffusing molecule can be exploited by cells to provide spatial information that divides the population into different transcriptional programs and phenotypes.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Ácido Aspártico Endopeptidasas/metabolismo , Microscopía Confocal/métodos , Mutación , Feromonas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370672

RESUMEN

Dietary intake is tightly coupled to gut microbiota composition, human metabolism, and to the incidence of virtually all major chronic diseases. Dietary and nutrient intake are usually quantified using dietary questionnaires, which tend to focus on broad food categories, suffer from self-reporting biases, and require strong compliance from study participants. Here, we present MEDI (Metagenomic Estimation of Dietary Intake): a method for quantifying dietary intake using food-derived DNA in stool metagenomes. We show that food items can be accurately detected in metagenomic shotgun sequencing data, even when present at low abundances (>10 reads). Furthermore, we show how dietary intake, in terms of DNA abundance from specific organisms, can be converted into a detailed metabolic representation of nutrient intake. MEDI could identify the onset of solid food consumption in infants and it accurately predicted food questionnaire responses in an adult population. Additionally, we were able to identify specific dietary features associated with metabolic syndrome in a large clinical cohort, providing a proof-of-concept for detailed quantification of individual-specific dietary patterns without the need for questionnaires.

7.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37162960

RESUMEN

Clostridioides difficile colonizes up to 30-40% of community-dwelling adults without causing disease. C. difficile infections (CDIs) are the leading cause of antibiotic-associated diarrhea in the U.S. and typically develop in individuals following disruption of the gut microbiota due to antibiotic or chemotherapy treatments. Further treatment of CDI with antibiotics is not always effective and can lead to antibiotic resistance and recurrent infections (rCDI). The most effective treatment for rCDI is the reestablishment of an intact microbiota via fecal microbiota transplants (FMTs). However, the success of FMTs has been difficult to generalize because the microbial interactions that prevent engraftment and facilitate the successful clearance of C. difficile are still only partially understood. Here we show how microbial community-scale metabolic models (MCMMs) accurately predicted known instances of C. difficile colonization susceptibility or resistance in vitro and in vivo. MCMMs provide detailed mechanistic insights into the ecological interactions that govern C. difficile engraftment, like cross-feeding or competition involving metabolites like succinate, trehalose, and ornithine, which differ from person to person. Indeed, three distinct C. difficile metabolic niches emerge from our MCMMs, two associated with positive growth rates and one that represents non-growth, which are consistently observed across 15,204 individuals from five independent cohorts. Finally, we show how MCMMs can predict personalized engraftment and C. difficile growth suppression for a probiotic cocktail (VE303) designed to replace FMTs for the treatment rCDI. Overall, this powerful modeling approach predicts personalized C. difficile engraftment risk and can be leveraged to assess probiotic treatment efficacy. MCMMs could be extended to understand the mechanistic underpinnings of personalized engraftment of other opportunistic bacterial pathogens, beneficial probiotic organisms, or more complex microbial consortia.

8.
ISME J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904949

RESUMEN

Prior work has shown a positive scaling relationship between vertebrate body size, human height, and gut microbiome alpha diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we expand these observations to several large data sets, showing that this size-diversity scaling relationship is independent of relevant covariates, like diet, body mass index, age, sex, bowel movement frequency, antibiotic usage, and cardiometabolic health markers. Island biogeography theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for positive SARs. Using gut-adapted IBT model, we demonstrated that increasing the length of a flow-through ecosystem led to increased species diversity, closely matching our empirical observations. We delve into the possible clinical implications of these SARs in the American Gut cohort. Consistent with prior observations that lower alpha diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship was mediated by alpha diversity. We observed that vegetable consumption had a much stronger association with CDI history, which was also partially mediated by alpha diversity. In summary, we find that the positive scaling observed between body size and gut alpha diversity can be plausibly explained by a gut-adapted IBT model, may be related to CDI risk, and vegetable intake appears to independently mitigate this risk, although additional work is needed to validate the potential disease risk implications.

9.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659900

RESUMEN

The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.

10.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945445

RESUMEN

Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.

11.
Nat Microbiol ; 9(7): 1700-1712, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38914826

RESUMEN

Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Humanos , Ácidos Grasos Volátiles/metabolismo , Prebióticos , Probióticos/metabolismo , Probióticos/administración & dosificación , Modelos Biológicos , Dieta , Bacterias/metabolismo , Bacterias/genética , Estudios de Cohortes , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Adulto
12.
Cell Host Microbe ; 31(7): 1076-1078, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37442093

RESUMEN

The composition of the human gut microbiome is heterogeneous across people. However, if you squint, co-abundant microbial genera emerge, accounting for much of this ecological variability. In this issue of Cell Host & Microbe, Frioux et al. provide a workflow for identifying these bacterial guilds, or "enterosignatures."


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias/genética , ARN Ribosómico 16S/genética , ARN Bacteriano
13.
mSystems ; 8(2): e0127022, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943046

RESUMEN

Microbial consortia drive essential processes, ranging from nitrogen fixation in soils to providing metabolic breakdown products to animal hosts. However, it is challenging to translate the composition of microbial consortia into their emergent functional capacities. Community-scale metabolic models hold the potential to simulate the outputs of complex microbial communities in a given environmental context, but there is currently no consensus for what the fitness function of an entire community should look like in the presence of ecological interactions and whether community-wide growth operates close to a maximum. Transitioning from single-taxon genome-scale metabolic models to multitaxon models implies a growth cone without a well-specified growth rate solution for individual taxa. Here, we argue that dynamic approaches naturally overcome these limitations, but they come at the cost of being computationally expensive. Furthermore, we show how two nondynamic, steady-state approaches approximate dynamic trajectories and pick ecologically relevant solutions from the community growth cone with improved computational scalability.


Asunto(s)
Consorcios Microbianos , Modelos Biológicos
14.
bioRxiv ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609334

RESUMEN

Prior work has shown a positive scaling relationship between vertebrate body size and gut microbiome alpha-diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we show a similar scaling relationship between human height and gut microbiome alpha-diversity across two large, independent cohorts, controlling for a wide range of relevant covariates, such as body mass index, age, sex, and bowel movement frequency. Island Biogeography Theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for these positive SARs. Using an individual-based model of IBT adapted to the gut, we demonstrate that increasing the length of a flow-through ecosystem is associated with increased species diversity. We delve into the possible clinical implications of these SARs in the American Gut Cohort. Consistent with prior observations that lower alpha-diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship appeared to be mediated by alpha-diversity. We also observed that vegetable consumption mitigated this risk increase, also by mediation through alpha-diversity. In summary, we find that body size and gut microbiome diversity show a robust positive association, that this macroecological scaling relationship is related to CDI risk, and that greater vegetable intake can mitigate this effect.

15.
Nat Commun ; 14(1): 5682, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709733

RESUMEN

Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.


Asunto(s)
Líquidos Corporales , Metagenoma , Animales , Humanos , Ecosistema , Heces , Densidad de Población , Escherichia coli/genética
16.
BMC Complement Med Ther ; 23(1): 367, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853370

RESUMEN

INTRODUCTION: Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS: This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION: The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION: Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION: Pan African Clinical Trials Registry Identifier: PACTR202301748714019. TRIALS: gov: NCT05923333. PROTOCOL VERSION: Version 1.8, dated 18 July 2023.


Asunto(s)
Infecciones por VIH , Vacunas , Femenino , Humanos , Lactante , Embarazo , Bifidobacterium longum subspecies infantis , Suplementos Dietéticos , Infecciones por VIH/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Sudáfrica
17.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909644

RESUMEN

Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation, and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM) approach to predict individual-specific SCFA production profiles. We assess the quantitative accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and probiotic interventions that optimize SCFA production in the gut. Our results represent an important advance in engineering gut microbiome functional outputs for precision health and nutrition.

18.
Nat Med ; 29(4): 996-1008, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941332

RESUMEN

Multiomic profiling can reveal population heterogeneity for both health and disease states. Obesity drives a myriad of metabolic perturbations and is a risk factor for multiple chronic diseases. Here we report an atlas of cross-sectional and longitudinal changes in 1,111 blood analytes associated with variation in body mass index (BMI), as well as multiomic associations with host polygenic risk scores and gut microbiome composition, from a cohort of 1,277 individuals enrolled in a wellness program (Arivale). Machine learning model predictions of BMI from blood multiomics captured heterogeneous phenotypic states of host metabolism and gut microbiome composition better than BMI, which was also validated in an external cohort (TwinsUK). Moreover, longitudinal analyses identified variable BMI trajectories for different omics measures in response to a healthy lifestyle intervention; metabolomics-inferred BMI decreased to a greater extent than actual BMI, whereas proteomics-inferred BMI exhibited greater resistance to change. Our analyses further identified blood analyte-analyte associations that were modified by metabolomics-inferred BMI and partially reversed in individuals with metabolic obesity during the intervention. Taken together, our findings provide a blood atlas of the molecular perturbations associated with changes in obesity status, serving as a resource to quantify metabolic health for predictive and preventive medicine.


Asunto(s)
Multiómica , Obesidad , Humanos , Índice de Masa Corporal , Estudios Transversales , Obesidad/metabolismo , Fenotipo
19.
Nat Commun ; 14(1): 6546, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863966

RESUMEN

Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Estudios de Casos y Controles , Metagenoma
20.
Front Oncol ; 12: 914594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875150

RESUMEN

The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA