Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Chem ; 11: 1219883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448856

RESUMEN

Despite the early clinical promise, adverse events such as acquired resistance and dose-limiting toxicities have barred the widespread use of HSP90 inhibitors as anticancer drugs. A new approach involving proteolysis-targeting chimeras (PROTACs) to degrade the protein instead of inhibiting it may overcome these problems. In this work, we describe the design, synthesis, and evaluation of cereblon-recruiting geldanamycin-based HSP90 degraders based on the PROTAC technology. Our best degrader, 3a, effectively decreased HSP90α and HSP90ß levels in cells utilizing the ubiquitin-proteasome pathway.

2.
Cell Death Dis ; 14(12): 799, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057328

RESUMEN

HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and ß) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90ß isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.


Asunto(s)
Antineoplásicos , Proteínas HSP90 de Choque Térmico , Leucemia , Neoplasias , Humanos , Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/genética , Mutación , Resistencia a Antineoplásicos
3.
J Med Chem ; 65(24): 16860-16878, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36473103

RESUMEN

In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HDAC6 degrader mini libraries. The PROTACs were either based on an unselective vorinostat-like HDAC ligand or derived from a selective HDAC6 inhibitor. Notably, both PROTAC series demonstrated selective degradation of HDAC6 in leukemia cell lines. The best degraders from each series (denoted A6 and B4) were capable of degrading HDAC6 via ternary complex formation and the ubiquitin-proteasome pathway, with DC50 values of 3.5 and 19.4 nM, respectively. PROTAC A6 demonstrated promising antiproliferative activity via inducing apoptosis in myeloid leukemia cell lines. These findings highlight the potential of this series of degraders as effective pharmacological tools for the targeted degradation of HDAC6.


Asunto(s)
Antineoplásicos , Histona Desacetilasa 6 , Antineoplásicos/farmacología , Quimera Dirigida a la Proteólisis , Técnicas de Síntesis en Fase Sólida , Proliferación Celular , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
4.
ACS Cent Sci ; 8(5): 636-655, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647282

RESUMEN

Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.

5.
Cancer Res ; 79(9): 2367-2378, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858154

RESUMEN

Aberrations within the PI3K/AKT signaling axis are frequently observed in numerous cancer types, highlighting the relevance of these pathways in cancer physiology and pathology. However, therapeutic interventions employing AKT inhibitors often suffer from limitations associated with target selectivity, efficacy, or dose-limiting effects. Here we present the first crystal structure of autoinhibited AKT1 in complex with the covalent-allosteric inhibitor borussertib, providing critical insights into the structural basis of AKT1 inhibition by this unique class of compounds. Comprehensive biological and preclinical evaluation of borussertib in cancer-related model systems demonstrated a strong antiproliferative activity in cancer cell lines harboring genetic alterations within the PTEN, PI3K, and RAS signaling pathways. Furthermore, borussertib displayed antitumor activity in combination with the MEK inhibitor trametinib in patient-derived xenograft models of mutant KRAS pancreatic and colon cancer. SIGNIFICANCE: Borussertib, a first-in-class covalent-allosteric AKT inhibitor, displays antitumor activity in combination with the MEK inhibitor trametinib in patient-derived xenograft models and provides a starting point for further pharmacokinetic/dynamic optimization.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridonas/farmacología , Pirimidinonas/farmacología , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Quimioterapia Combinada , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA