Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217617

RESUMEN

Circadian clocks are timing systems that rhythmically adjust physiology and metabolism to the 24-h day-night cycle. Eukaryotic circadian clocks are based on transcriptional-translational feedback loops (TTFLs). Yet TTFL-core components such as Frequency (FRQ) in Neurospora and Periods (PERs) in animals are not conserved, leaving unclear how a 24-h period is measured on the molecular level. Here, we show that CK1 is sufficient to promote FRQ and mouse PER2 (mPER2) hyperphosphorylation on a circadian timescale by targeting a large number of low-affinity phosphorylation sites. Slow phosphorylation kinetics rely on site-specific recruitment of Casein Kinase 1 (CK1) and access of intrinsically disordered segments of FRQ or mPER2 to bound CK1 and on CK1 autoinhibition. Compromising CK1 activity and substrate binding affects the circadian clock in Neurospora and mammalian cells, respectively. We propose that CK1 and the clock proteins FRQ and PERs form functionally equivalent, phospho-based timing modules in the core of the circadian clocks of fungi and animals.


Asunto(s)
Proteínas CLOCK/metabolismo , Quinasa de la Caseína I/metabolismo , Relojes Circadianos , Neurospora crassa/metabolismo , Animales , Cinética , Ratones , Fosforilación
2.
PLoS Comput Biol ; 18(8): e1010331, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951637

RESUMEN

Eukaryotic circadian clocks are based on self-sustaining, cell-autonomous oscillatory feedback loops that can synchronize with the environment via recurrent stimuli (zeitgebers) such as light. The components of biological clocks and their network interactions are becoming increasingly known, calling for a quantitative understanding of their role for clock function. However, the development of data-driven mathematical clock models has remained limited by the lack of sufficiently accurate data. Here we present a comprehensive model of the circadian clock of Neurospora crassa that describe free-running oscillations in constant darkness and entrainment in light-dark cycles. To parameterize the model, we measured high-resolution time courses of luciferase reporters of morning and evening specific clock genes in WT and a mutant strain. Fitting the model to such comprehensive data allowed estimating parameters governing circadian phase, period length and amplitude, and the response of genes to light cues. Our model suggests that functional maturation of the core clock protein Frequency causes a delay in negative feedback that is critical for generating circadian rhythms.


Asunto(s)
Relojes Circadianos , Neurospora crassa , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética
3.
Proc Natl Acad Sci U S A ; 116(35): 17271-17279, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31413202

RESUMEN

Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence, Neurospora mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.


Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimología , Biosíntesis de Proteínas , Transducción de Señal , Estrés Fisiológico , Quinasa de Punto de Control 2/genética , Proteínas Fúngicas/genética , Neurospora crassa/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
4.
Genes Dev ; 26(5): 415-6, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22391445

RESUMEN

In this issue of Genes & Development, Kim and colleagues (pp. 490-502) report that the Drosophila circadian repressor dPER undergoes O-linked GlcNAcylation (O-GlcNAc). Their data show that manipulation of the relevant O-GlcNAc transferase (OGT) regulates behavioral rhythmicity by affecting the stability and nuclear translocation of dPER.


Asunto(s)
Relojes Circadianos/fisiología , Drosophila melanogaster/fisiología , Animales
5.
Nat Chem Biol ; 13(7): 709-714, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28459440

RESUMEN

Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain-containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1-BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases.


Asunto(s)
Quelantes/farmacología , Inhibidores Enzimáticos/farmacología , Metaloproteasas/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Zinc/química , Quelantes/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Metaloproteasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacología , Relación Estructura-Actividad , Transactivadores/metabolismo
6.
Mol Cell ; 43(5): 713-22, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884974

RESUMEN

In the course of a day, the Neurospora clock protein FREQUENCY (FRQ) is progressively phosphorylated at up to 113 sites and eventually degraded. Phosphorylation and degradation are crucial for circadian time keeping, but it is not known how phosphorylation of a large number of sites correlates with circadian degradation of FRQ. We show that two amphipathic motifs in FRQ interact over a long distance, bringing the positively charged N-terminal portion in spatial proximity to the negatively charged middle and C-terminal portion of FRQ. The interaction is essential for the recruitment of casein kinase 1a (CK1a) into a stable complex with FRQ. FRQ-bound CK1a progressively phosphorylates the positively charged N-terminal domain of FRQ at up to 46 nonconsensus sites, triggering a conformational change, presumably by electrostatic repulsion, that commits the protein for degradation via the PEST1 signal in the negatively charged central portion of FRQ.


Asunto(s)
Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , Proteínas CLOCK/genética , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Ritmo Circadiano , Proteínas Fúngicas/genética , Fosforilación , Estructura Terciaria de Proteína
7.
Mol Cell ; 44(5): 687-97, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152473

RESUMEN

The white-collar complex (WCC), the core transcription factor of the circadian clock of Neurospora, activates morning-specific expression of the transcription repressor CSP1. Newly synthesized CSP1 exists in a transient complex with the corepressor RCM1/RCO1 and the ubiquitin ligase UBR1. CSP1 is rapidly hyperphosphorylated and degraded via UBR1 and its ubiquitin conjugase RAD6. Genes controlled by CSP1 are rhythmically expressed and peak in the evening (i.e., in antiphase to morning-specific genes directly controlled by WCC). Rhythmic expression of these second-tier genes depends crucially on phosphorylation and rapid turnover of CSP1, which ensures tight coupling of CSP1 abundance and function to the circadian activity of WCC. Negative feedback of CSP1 on its own transcription buffers the amplitude of CSP1-dependent oscillations against fluctuations of WCC activity. CSP1 predominantly regulates genes involved in metabolism. It controls ergosterol synthesis and fatty acid desaturases and thereby modulates the lipid composition of membranes.


Asunto(s)
Ritmo Circadiano/genética , Regulación Fúngica de la Expresión Génica , Neurospora/genética , Neurospora/metabolismo , Proteínas Represoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética
8.
Genes Dev ; 23(18): 2192-200, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19759264

RESUMEN

The Neurospora clock protein FREQUENCY (FRQ) is an essential regulator of the circadian transcription factor WHITE COLLAR COMPLEX (WCC). In the course of a circadian period, the subcellular distribution of FRQ shifts from mainly nuclear to mainly cytosolic. This shift is crucial for coordinating the negative and positive limbs of the clock. We show that the subcellular redistribution of FRQ on a circadian time scale is governed by rapid, noncircadian cycles of nuclear import and export. The rate of nuclear import of newly synthesized FRQ is progressively reduced in a phosphorylation-dependent manner, leading to an increase in the steady-state level of cytoplasmic FRQ. The long-period frq(7) mutant displays reduced kinetics of FRQ(7) protein phosphorylation and a prolonged accumulation in the nucleus. We present a mathematical model that describes the cytoplasmic accumulation of wild-type and mutant FRQ on a circadian time scale on the basis of frequency-modulated rapid nucleocytoplasmic shuttling cycles.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Ritmo Circadiano/fisiología , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Neurospora crassa/metabolismo , Proteínas Fúngicas/genética , Mutación , Neurospora crassa/genética , Fosforilación
9.
Mol Syst Biol ; 9: 667, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23712010

RESUMEN

The light response in Neurospora is mediated by the photoreceptor and circadian transcription factor White Collar Complex (WCC). The expression rate of the WCC target genes adapts in daylight and remains refractory to moonlight, despite the extraordinary light sensitivity of the WCC. To explain this photoadaptation, feedback inhibition by the WCC interaction partner VIVID (VVD) has been invoked. Here we show through data-driven mathematical modeling that VVD allows Neurospora to detect relative changes in light intensity. To achieve this behavior, VVD acts as an inhibitor of WCC-driven gene expression and, at the same time, as a positive regulator that maintains the responsiveness of the photosystem. Our data indicate that this paradoxical function is realized by a futile cycle that involves the light-induced sequestration of active WCC by VVD and the replenishment of the activatable WCC pool through the decay of the photoactivated state. Our quantitative study uncovers a novel network motif for achieving sensory adaptation and defines a core input module of the circadian clock in Neurospora.


Asunto(s)
Relojes Circadianos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Neurospora crassa/genética , Fotorreceptores Microbianos/genética , Adaptación Fisiológica/efectos de la radiación , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Simulación por Computador , Retroalimentación Fisiológica/efectos de la radiación , Proteínas Fúngicas/metabolismo , Luz , Modelos Genéticos , Neurospora crassa/metabolismo , Neurospora crassa/efectos de la radiación , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 287(44): 36936-43, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22955278

RESUMEN

Timekeeping by circadian clocks relies upon precise adjustment of expression levels of clock proteins. Here we identify glycogen synthase kinase (GSK) as a novel and critical component of the circadian clock of Neurospora crassa that regulates the abundance of its core transcription factor white collar complex (WCC) on a post-transcriptional level. We show that GSK specifically binds and phosphorylates both subunits of the WCC. Reduced expression of GSK promotes an increased accumulation of WC-1, the limiting factor of the WCC, causing an acceleration of the circadian clock and a shorter free-running period.


Asunto(s)
Relojes Circadianos , Proteínas Fúngicas/fisiología , Glucógeno Sintasa Quinasas/fisiología , Neurospora crassa/enzimología , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Técnicas de Sustitución del Gen , Glucógeno Sintasa Quinasas/genética , Glucógeno Sintasa Quinasas/metabolismo , Complejos Multiproteicos/metabolismo , Neurospora crassa/fisiología , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Esporas Fúngicas/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética
11.
J Biol Rhythms ; 38(3): 259-268, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36876962

RESUMEN

The circadian clock of Neurospora crassa is based on a negative transcriptional/translational feedback loops. The frequency (frq) gene controls the morning-specific rhythmic transcription of a sense RNA encoding FRQ, the negative element of the core circadian feedback loop. In addition, a long noncoding antisense RNA, qrf, is rhythmically transcribed in an evening-specific manner. It has been reported that the qrf rhythm relies on transcriptional interference with frq transcription and that complete suppression of qrf transcription impairs the circadian clock. We show here that qrf transcription is dispensable for circadian clock function. Rather, the evening-specific transcriptional rhythm of qrf is mediated by the morning-specific repressor CSP-1. Since CSP-1 expression is induced by light and glucose, this suggests a rhythmic coordination of qrf transcription with metabolism. However, a possible physiological significance for the circadian clock remains unclear, as suitable assays are not available.


Asunto(s)
Relojes Circadianos , Neurospora crassa , ARN Largo no Codificante , Ritmo Circadiano/genética , Regulación Fúngica de la Expresión Génica , Relojes Circadianos/genética , Neurospora crassa/genética , ARN Largo no Codificante/genética , Proteínas Fúngicas/genética
12.
Sci Adv ; 9(26): eadh0721, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390199

RESUMEN

RNA polymerase II initiates transcription either randomly or in bursts. We examined the light-dependent transcriptional activator White Collar Complex (WCC) of Neurospora to characterize the transcriptional dynamics of the strong vivid (vvd) promoter and the weaker frequency (frq) promoter. We show that WCC is not only an activator but also represses transcription by recruiting histone deacetylase 3 (HDA3). Our data suggest that bursts of frq transcription are governed by a long-lived refractory state established and maintained by WCC and HDA3 at the core promoter, whereas transcription of vvd is determined by WCC binding dynamics at an upstream activating sequence. Thus, in addition to stochastic binding of transcription factors, transcription factor-mediated repression may also influence transcriptional bursting.


Asunto(s)
Neurospora , Neurospora/genética , Histona Desacetilasas/genética , Factores de Transcripción/genética , Expresión Génica
13.
Elife ; 122023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36625037

RESUMEN

The circadian clock governs rhythmic cellular functions by driving the expression of a substantial fraction of the genome and thereby significantly contributes to the adaptation to changing environmental conditions. Using the circadian model organism Neurospora crassa, we show that molecular timekeeping is robust even under severe limitation of carbon sources, however, stoichiometry, phosphorylation and subcellular distribution of the key clock components display drastic alterations. Protein kinase A, protein phosphatase 2 A and glycogen synthase kinase are involved in the molecular reorganization of the clock. RNA-seq analysis reveals that the transcriptomic response of metabolism to starvation is highly dependent on the positive clock component WC-1. Moreover, our molecular and phenotypic data indicate that a functional clock facilitates recovery from starvation. We suggest that the molecular clock is a flexible network that allows the organism to maintain rhythmic physiology and preserve fitness even under long-term nutritional stress.


Asunto(s)
Relojes Circadianos , Neurospora crassa , Relojes Circadianos/genética , Neurospora crassa/metabolismo , Glucosa/metabolismo , Fosforilación , Transcriptoma , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica
14.
FEBS Lett ; 596(15): 1881-1891, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35735764

RESUMEN

Timing by the circadian clock of Neurospora is associated with hyperphosphorylation of frequency (FRQ), which depends on anchoring casein kinase 1a (CK1a) to FRQ. It is not known how CK1a is anchored so that approximately 100 sites in FRQ can be targeted. Here, we identified two regions in CK1a, p1 and p2, that are required for anchoring to FRQ. Mutation of p1 or p2 impairs progressive hyperphosphorylation of FRQ. A p1-mutated strain is viable but its circadian clock is non-functional, whereas a p2-mutated strain is non-viable. Our data suggest that p1 and potentially also p2 in CK1a provide an interface for interaction with FRQ. Anchoring via p1-p2 leaves the active site of CK1a accessible for phosphorylation of FRQ at multiple sites.


Asunto(s)
Relojes Circadianos , Neurospora crassa , Neurospora , Caseína Quinasas/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética , Neurospora/metabolismo , Neurospora crassa/genética
15.
FEBS Lett ; 595(12): 1639-1655, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33914337

RESUMEN

MXDs are transcription repressors that antagonize MYC-mediated gene activation. MYC, when associated with MIZ1, acts also as a repressor of a subset of genes, including p15 and p21. A role for MXDs in regulation of MYC-repressed genes is not known. We report that MXDs activate transcription of p15 and p21 in U2OS cells. This activation required DNA binding by MXDs and their interaction with MIZ1. MXD mutants deficient in MIZ1 binding interacted with the MYC-binding partner MAX and were active as repressors of MYC-activated genes but failed to activate MYC-repressed genes. Mutant MXDs with reduced DNA-binding affinity interacted with MAX and MIZ1 but neither repressed nor activated transcription. Our data show that MXDs and MYC have a reciprocally antagonistic potential to regulate transcription of target genes.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células HEK293 , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Proto-Oncogénicas c-myc/genética
16.
J Mol Biol ; 432(12): 3449-3465, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32305463

RESUMEN

Circadian clocks are self-sustained oscillators that orchestrate metabolism and physiology in synchrony with the 24-h day-night cycle. They are temperature compensated over a wide range and entrained by daily recurring environmental cues. Eukaryotic circadian clocks are governed by cell-based transcriptional-translational feedback loops (TTFLs). The core components of the TTFLs are largely known and their molecular interactions in many cases well established. Although the core clock components are not or only partly conserved, the molecular wiring of TTFLs is rather similar across kingdoms and phylae. In all known systems, circadian timing relies critically on casein kinase 1 (CK1) and CK1-dependent hyperphosphorylation of core clock proteins, in particular of negative elements of the TTFLs. Yet, we lack concepts as to how phosphorylation by CK1a and other kinases relates to timekeeping on the molecular level. Here we summarize what is known about phosphorylation of core components of the circadian clock of Neurospora crassa and speculate about the molecular basis of circadian timekeeping by hyperphosphorylation of intrinsically disordered regions in clock proteins.


Asunto(s)
Relojes Circadianos/genética , Neurospora crassa/genética , Biosíntesis de Proteínas , Transcripción Genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Retroalimentación Fisiológica , Fosforilación/genética , Fotoperiodo
17.
Sci Rep ; 10(1): 22224, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335302

RESUMEN

Theory predicts that self-sustained oscillations require robust delays and nonlinearities (ultrasensitivity). Delayed negative feedback loops with switch-like inhibition of transcription constitute the core of eukaryotic circadian clocks. The kinetics of core clock proteins such as PER2 in mammals and FRQ in Neurospora crassa is governed by multiple phosphorylations. We investigate how multiple, slow and random phosphorylations control delay and molecular switches. We model phosphorylations of intrinsically disordered clock proteins (IDPs) using conceptual models of sequential and distributive phosphorylations. Our models help to understand the underlying mechanisms leading to delays and ultrasensitivity. The model shows temporal and steady state switches for the free kinase and the phosphoprotein. We show that random phosphorylations and sequestration mechanisms allow high Hill coefficients required for self-sustained oscillations.


Asunto(s)
Proteínas CLOCK/metabolismo , Animales , Proteínas CLOCK/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Biología Computacional , Retroalimentación Fisiológica , Mamíferos , Modelos Biológicos , Neurospora crassa/fisiología , Fosforilación , Biosíntesis de Proteínas , Transcripción Genética
18.
iScience ; 9: 475-486, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30472532

RESUMEN

In many organisms, the circadian clock drives rhythms in the transcription of clock-controlled genes that can be either circadian (∼24-hr period) or ultradian (<24-hr period). Ultradian rhythms with periods that are a fraction of 24 hr are termed harmonics. Several harmonic transcripts were discovered in the mouse liver, but their functional significance remains unclear. Using a model-based analysis, we report for the first time ∼7-hr third harmonic transcripts in Neurospora crassa, a well-established fungal circadian model organism. Several third harmonic genes are regulated by female fertility 7 (FF-7), whose transcript itself is third harmonic. The knockout of circadian output regulator CSP1 superimposes circadian rhythms on the third harmonic genes, whereas the knockout of stress response regulator MSN1 converts third harmonic rhythms to second harmonic rhythms. The 460 ∼7-hr genes are co-regulated in two anti-phasic groups in multiple genotypes and include kinases, chromatin remodelers, and homologs of harmonic genes in the mouse liver.

19.
FEBS Lett ; 581(30): 5759-64, 2007 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-18037381

RESUMEN

The large (l) and small (s) isoforms of FREQUENCY (FRQ) are elements of interconnected feedback loops of the Neurospora circadian clock. The expression ratio of l-FRQ vs. s-FRQ is regulated by thermosensitive splicing of an intron containing the initiation codon for l-FRQ. We show that this splicing is dependent on light and temperature and displays a circadian rhythm. Strains expressing only l-FRQ or s-FRQ support short and long temperature-compensated circadian rhythms, respectively. The thermosensitive expression ratio of FRQ isoforms influences period length in wt. Our data indicate that differential expression of FRQ isoforms is not required for temperature compensation but rather provides a means to fine-tune period length in response to ambient temperature.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas Fúngicas/metabolismo , Neurospora/fisiología , Temperatura , Transactivadores/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/efectos de la radiación , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas CLOCK , Ritmo Circadiano/efectos de la radiación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Luz , Datos de Secuencia Molecular , Mutación/genética , Neurospora/citología , Neurospora/efectos de la radiación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Tiempo , Transactivadores/química , Transactivadores/genética
20.
Chronobiol Int ; 23(1-2): 81-90, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16687282

RESUMEN

Light and temperature are major environmental cues that influence circadian clocks. The molecular effects of these zeitgebers on the circadian clock of Neurospora crassa have been studied intensively during the last decade. While signal transduction of light into the circadian clock is quite well characterized, we have only recently begun to understand the molecular mechanisms that underlie temperature sensing. Here we summarize briefly the current knowledge about the effects of temperature on the circadian clock of Neurospora crassa.


Asunto(s)
Ritmo Circadiano , Neurospora crassa/fisiología , Temperatura , Empalme Alternativo , Relojes Biológicos , Luz , Modelos Biológicos , Biosíntesis de Proteínas , Isoformas de Proteínas , Transducción de Señal , Sensación Térmica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA