Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Recent Results Cancer Res ; 215: 299-318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31605236

RESUMEN

Lung cancer is the number one cause of cancer-related mortality worldwide. To improve disease outcome, it is crucial to implement biomarkers into the clinics which assist physicians in their decisions regarding diagnosis, prognosis, as well as prediction of treatment response. Liquid biopsy offers an opportunity to obtain such biomarkers in a minimal invasive manner by retrieving tumor-derived material from body fluids of the patient. The abundance of circulating microRNAs is known to be altered in disease and has therefore been studied extensively as a cancer biomarker. Circulating microRNAs present a variety of favorable characteristics for application as liquid biopsy-based biomarkers, including their high stability, relatively high abundance, and presence is nearly all body fluids. Although the application of circulating microRNAs for the management of lung cancer has not entered the clinics yet, several studies showed their utility for diagnosis, prognosis, and efficacy prediction of various treatment strategies, including surgery, radio-/chemotherapy, as well as targeted therapy. To compensate for their limited tumor specificity, several microRNAs are frequently combined into microRNA panels. Moreover, the possibility to combine single microRNAs or microRNA panels with tumor imaging or other cancer-specific biomarkers has the potential to increase specificity and sensitivity and could lead to the clinical application of novel multi-marker combinations.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARN Circulante/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , ARN Neoplásico/sangre , Biomarcadores de Tumor/sangre , MicroARN Circulante/sangre , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Pronóstico , ARN Neoplásico/genética
2.
Int J Cancer ; 144(5): 1061-1072, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30350867

RESUMEN

Lung adenocarcinoma (ADC) is the most prevalent subtype of lung cancer and characterized by considerable morphological and mutational heterogeneity. However, little is known about the epigenomic intratumor variability between spatially separated histological growth patterns of ADC. In order to reconstruct the clonal evolution of histomorphological patterns, we performed global DNA methylation profiling of 27 primary tumor regions, seven matched normal tissues and six lymph node metastases from seven ADC cases. Additionally, we investigated the methylation data from 369 samples of the TCGA ADC cohort. All regions showed varying degrees of methylation changes between segments of different, but also of the same growth patterns. Similarly, copy number variations were seen between spatially distinct segments of each patient. Hierarchical clustering of promoter methylation revealed extensive heterogeneity within and between the cases. Intratumor DNA methylation heterogeneity demonstrated a branched clonal evolution of ADC regions driven by genomic instability with subclonal copy number changes. Notably, methylation profiles within tumors were not more similar to each other than to those from other individuals. In two cases, different tumor regions of the same individuals were represented in distant clusters of the TCGA cohort, illustrating the extensive epigenomic intratumor heterogeneity of ADCs. We found no evidence for the lymph node metastases to be derived from a common growth pattern. Instead, they had evolved early and separately from a particular pattern in each primary tumor. Our results suggest that extensive variation of epigenomic features contributes to the molecular and phenotypic heterogeneity of primary ADCs and lymph node metastases.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Metilación de ADN/genética , Neoplasias Pulmonares/genética , Anciano , Anciano de 80 o más Años , Evolución Clonal , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Femenino , Heterogeneidad Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Regiones Promotoras Genéticas/genética
3.
Genes Chromosomes Cancer ; 57(3): 123-139, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29205637

RESUMEN

Recently, many genome-wide profiling studies provided insights into the molecular make-up of major cancer types. The deeper understanding of these genetic alterations and their functional consequences led to the discovery of novel therapeutic opportunities improving clinical management of cancer patients. While tissue-based molecular patient stratification is the gold standard for precision medicine, it has certain limitations: Tissue biopsies are invasive sampling procedures carrying the risk of complications and may not represent the entire tumor due to underlying genetic heterogeneity. In this context, complementary characterization of genetic information in the blood of cancer patients can serve as minimal-invasive 'liquid biopsy'. Fragments of circulating cell-free DNA (cfDNA) are released from tissues of healthy individuals as well as cancer patients. The fraction of cfDNA that is released from primary tumors or metastases (i.e. circulating tumor DNA, ctDNA) represents genetic aberrations in cancer cells, which are a potential source for diagnostic, prognostic, and predictive biomarkers. Recent studies have demonstrated technical feasibility and clinical applications including detection of drug targets and resistance mutations as well as longitudinal monitoring of tumors under therapy. To this end, a variety of pre-analytical procedures for blood processing, isolation and quantification of cfDNA are being employed and several analytical methods and technologies ranging from PCR-based single locus assays to genome-wide approaches are available, which considerably differ in sensitivity, specificity, and throughput. However, broad implementation of ctDNA analysis in daily clinical practice requires a thorough understanding of theoretical, technical, and biological concepts and necessitates standardization and validation of pre-analytical and analytical procedures across different technologies. Here, we review the pertinent literature and discuss the advantages and limitations of available methodologies and their potential applications in molecular diagnostics.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Neoplasias/diagnóstico , Patología Molecular/métodos , Biomarcadores de Tumor/genética , Biopsia , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , ADN de Neoplasias/genética , Humanos , Mutación , Neoplasias/sangre , Neoplasias/genética , Medicina de Precisión/métodos , Pronóstico
4.
Int J Cancer ; 141(9): 1841-1848, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28699162

RESUMEN

Multiregional analysis provided first indications for morphological and molecular heterogeneity in lung adenocarcinomas (ADCs), but comprehensive morpho-molecular comparisons are still lacking. The purpose of our study was to investigate the spatial distribution of EGFR and KRAS alterations systematically throughout whole tumor cross-sections in correlation with the tumor cell content and the histopathological patterns. Central sections of 19 ADCs were subdivided into 467 segments of 5 mm × 5 mm. We determined the predominant histological growth pattern and the allele frequencies of driver gene mutations by digital PCR in every segment. We further quantified the absolute cell counts and proportions of tumor and non-neoplastic cells in all segments to normalize the mutant allele frequencies. Driver gene mutations could be detected in >99% of the tumor containing segments, with high levels of inter- and intratumor heterogeneity regarding the mutant allele frequency (range: 0.04-19.36). Different patterns for the distribution of the variant allele frequency within a tumor were recognizable. While some cases showed ubiquitously low or high levels, others revealed regions with focally elevated frequencies. Differences between KRAS and EGFR alterations were not significant. The great majority of the analyzed tumor sections (16/19) exhibited two or more morphological growth patterns. Mutant allele frequencies were significantly higher in segments with a predominant solid pattern compared to all other histologies (p < 0.01). Our data indicate that driver gene mutations are present with high levels of inter- and intratumor heterogeneity throughout the whole tumor, with a correlation between the allele frequencies and histological growth patterns.


Asunto(s)
Adenocarcinoma/genética , Receptores ErbB/genética , Heterogeneidad Genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Anciano , Anciano de 80 o más Años , Femenino , Frecuencia de los Genes , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación
5.
J Biol Chem ; 290(7): 4476-86, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25561737

RESUMEN

Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster (431)EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster (489)EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oocitos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Transporte Biológico , Anhidrasa Carbónica II/genética , Electrofisiología , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Oocitos/citología , Unión Proteica , Isoformas de Proteínas , Ratas , Homología de Secuencia de Aminoácido , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
6.
Transl Lung Cancer Res ; 10(5): 2118-2131, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34164264

RESUMEN

BACKGROUND: Liquid rebiopsies can detect resistance mutations to guide therapy of anaplastic lymphoma kinase-rearranged (ALK+) non-small-cell lung cancer (NSCLC) failing tyrosine kinase inhibitors (TKI). Here, we analyze how their results relate to the anatomical pattern of disease progression and patient outcome. METHODS: Clinical, molecular, and radiologic characteristics of consecutive TKI-treated ALK+ NSCLC patients were analyzed using prospectively collected plasma samples and the 17-gene targeted AVENIO kit, which covers oncogenic drivers and all TP53 exons. RESULTS: In 56 patients, 139 instances of radiologic changes were analyzed, of which 133 corresponded to disease progression. Circulating tumor DNA (ctDNA) alterations were identified in most instances of extracranial progression (58/94 or 62%), especially if concomitant intracranial progression was also present (89%, P<0.001), but rarely in case of isolated central nervous system (CNS) progression (8/39 or 21%, P<0.001). ctDNA detectability correlated with presence of "short" echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants (mainly V3, E6:A20) and/or TP53 mutations (P<0.05), and presented therapeutic opportunities in <50% of cases. Patients with extracranial progression and positive liquid biopsies had shorter survival from the start of palliative treatment (mean 52 vs. 69 months, P=0.002), regardless of previous and subsequent therapy and initial ECOG performance status. Furthermore, for patients with extracranial progression, ctDNA detectability was associated with shorter next-line progression-free survival (PFS) (3 vs. 13 months, P=0.003) if they were switched to another systemic therapy (49/86 samples), and with shorter time-to-next-treatment (TNT) (3 vs. 8 months, P=0.004) if they were continued on the same treatment due to oligoprogression (37/86). In contrast, ctDNA detectability was not associated with the outcome of patients showing CNS-only progression. In 6/6 cases with suspicion of non-neoplastic radiologic lung changes (mainly infection or pneumonitis), ctDNA results remained negative. CONCLUSIONS: Positive blood-based liquid rebiopsies in ALK+ NSCLC characterize biologically more aggressive disease and are common with extracranial, but rare with CNS-only progression or benign radiologic changes. These results reconcile the increased detection of ALK resistance mutations with other features of the high-risk EML4-ALK V3-associated phenotype. Conversely, most oligoprogressive patients with negative liquid biopsies have a more indolent course without need for early change of systemic treatment.

7.
NPJ Precis Oncol ; 5(1): 100, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876698

RESUMEN

Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC.

8.
Cancers (Basel) ; 12(4)2020 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290637

RESUMEN

Computed tomography (CT) scans are the gold standard to measure treatment success of non-small cell lung cancer (NSCLC) therapies. Here, we investigated the very early tumor response of patients receiving chemotherapy or targeted therapies using a panel of already established and explorative liquid biomarkers. Blood samples from 50 patients were taken at baseline and at three early time points after therapy initiation. DNA mutations, a panel of 17 microRNAs, glycodelin, glutathione disulfide, glutathione, soluble caspase-cleaved cytokeratin 18 (M30 antigen), and soluble cytokeratin 18 (M65 antigen) were measured in serum and plasma samples. Baseline and first follow-up CT scans were evaluated and correlated with biomarker data. The detection rate of the individual biomarkers was between 56% and 100%. While only keratin 18 correlated with the tumor load at baseline, we found several individual markers correlating with the tumor response to treatment for each of the three time points of blood draws. A combination of the five best markers at each time point resulted in highly significant marker panels indicating therapeutic response (R2 = 0.78, R2 = 0.71, and R2 = 0.71). Our study demonstrates that an early measurement of biomarkers immediately after therapy start can assess tumor response to treatment and might support an adaptation of treatment to improve patients' outcome.

9.
Macromol Biosci ; 20(4): e2000005, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32104975

RESUMEN

The pathogenic yeast Candida auris has received increasing attention due to its ability to cause fatal infections, its resistance toward important fungicides, and its ability to persist on surfaces including medical devices in hospitals. To brace health care systems for this considerable risk, alternative therapeutic approaches such as antifungal peptides are urgently needed. In clinical wound care, a significant focus has been directed toward novel surgical (wound) dressings as first defense lines against C. auris. Inspired by Cerberus the Greek mythological "hound of Hades" that prevents the living from entering and the dead from leaving hell, the preparation of a gatekeeper hybrid hydrogel is reported featuring lectin-mediated high-affinity immobilization of C. auris cells from a collagen gel as a model substratum in combination with a release of an antifungal peptide drug to kill the trapped cells. The vision is an efficient and safe two-layer medical composite hydrogel for the treatment of severe wound infections that typically occur in hospitals. Providing this new armament to the repertoire of possibilities for wound care in critical (intensive care) units may open new routes to shield and defend patients from infections and clinical facilities from spreading and invasion of C. auris and probably other fungal pathogens.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Hidrogeles/farmacología , Péptidos/farmacología , Animales , Antifúngicos/síntesis química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vendajes , Candida/crecimiento & desarrollo , Candida/patogenicidad , Colágeno/química , Expresión Génica , Humanos , Hidrogeles/química , Lectinas/genética , Lectinas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metionina/química , Pruebas de Sensibilidad Microbiana , Compuestos Organofosforados/química , Péptidos/síntesis química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Albúmina Sérica Bovina/química , Piel/efectos de los fármacos , Porcinos , Compuestos de Tritilo/química
10.
EBioMedicine ; 62: 103103, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33161228

RESUMEN

BACKGROUND: Targeted therapies (TKI) have improved the prognosis of ALK-rearranged lung cancer (ALK+ NSCLC), but clinical courses vary widely. Early identification and molecular characterisation of treatment failure have key importance for subsequent therapies. We performed copy number variation (CNV) profiling and targeted panel sequencing from cell-free DNA (cfDNA) to monitor ALK+ NSCLC. METHODS: 271 longitudinal plasma DNA samples from 73 patients with TKI-treated metastatic ALK+ NSCLC were analysed by capture-based targeted (average coverage 4,100x), and shallow whole genome sequencing (sWGS, 0.5x). Mutations were called using standard algorithms. CNVs were quantified using the trimmed median absolute deviation from copy number neutrality (t-MAD). FINDINGS: cfDNA mutations were identified in 58% of patients. They included several potentially actionable alterations, e.g. in the genes BRAF, ERBB2, and KIT. sWGS detected CNVs in 18% of samples, compared to 6% using targeted sequencing. Several of the CNVs included potentially druggable targets, such as regions harboring EGFR, ERBB2, and MET. Circulating tumour DNA (ctDNA) mutations and t-MAD scores increased during treatment, correlated with markers of higher molecular risk, such as the EML4-ALK variant 3 and/or TP53 mutations, and were associated with shorter patient survival. Importantly, t-MAD scores reflected the tumour remission status in serial samples similar to mutant ctDNA allele frequencies, and increased with disease progression in 79% (34/43) of cases, including those without detectable single nucleotide variant (SNV). INTERPRETATION: Combined copy number and targeted mutation profiling could improve monitoring of ALK+ NSCLC. Potential advantages include the identification of treatment failure, in particular for patients without detectable mutations, and broader detection of genomic changes acquired during therapy, especially in later treatment lines and in high-risk patients. FUNDING: This work was supported by the German Center for Lung Research (DZL), by the German Cancer Consortium (DKTK), by the Heidelberg Center for Personalized Oncology at the German Cancer Research Center (DKFZ-HIPO), and by Roche Sequencing Solutions (Pleasanton, CA, USA).


Asunto(s)
ADN Tumoral Circulante , Variaciones en el Número de Copia de ADN , Neoplasias Pulmonares/genética , Mutación , Anciano , Biomarcadores de Tumor , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento
11.
Oncotarget ; 10(33): 3093-3103, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31139322

RESUMEN

Anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancers (NSCLC) have the best prognosis among metastatic pulmonary malignancies, with a median patient survival currently exceeding 5 years. While this is definitely a major therapeutic success for thoracic oncology, it may not be entirely attributable to rapid drug development and the strenuous clinical efforts. At the genetic level, ALK+ disease is also unique, distinguished by the lowest tumor mutational burden (mean below 3 mutations/Mbp), the lowest frequency of TP53 mutations (20-25%) and very few other co-mutations compared to other NSCLC. The relative simplicity and stability of the genetic landscape not only contribute to the relatively favourable clinical course, but also make study of the effects from individual molecular features easier. EML4-ALK fusion variant 3 (E6;A20) and TP53 mutations were recently identified as main molecular determinants of adverse outcome: they occur in about 30-40% and 20-25% of newly-diagnosed cases, respectively, have possibly synergistic effects and are independently associated with more aggressive disease, shorter progression-free survival under treatment with ALK inhibitors and worse overall survival. Secondary detection of TP53 mutations at disease progression in previously negative patients defines another subset (about 20%) with similarly poor outcome, while detection of ALK resistance mutations guides next-line therapy. As our biological understanding deepens, additional molecular risk factors will be identified and refine our concepts further. The translation of clinical risk at the molecular level and the ability to predict early events are of key importance for individualized patient management and preclinical modeling in order to advance therapeutic options.

12.
Proteomics Clin Appl ; 13(1): e1800034, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30216696

RESUMEN

PURPOSE: Matrix assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) is a powerful tool to analyze the spatial distribution of peptides in tissues. Digital PCR (dPCR) is a method to reliably detect genetic mutations. Biopsy material is often limited due to minimally invasive techniques, but information on diagnosis, prognosis, and prediction is required for subsequent clinical decision making. Thus, saving tissue material during diagnostic workup is highly warranted for best patient care. The possibility to combine proteomic analysis by MALDI-MSI and mutational analysis by dPCR from the same tissue section is evaluated. EXPERIMENTAL DESIGN: Ten 0.5 × 0.5 cm formalin-fixed paraffin embedded tissue samples of pulmonary adenocarcinomas with known EGFR or KRAS mutations are analyzed by MALDI-MSI. Subsequently, DNA is extracted from the analyzed tissue material and tested for the respective driver mutation by dPCR. RESULTS: Detection of driver gene mutations after MALDI MSI analysis is successful in all analyzed samples. Determined mutant allele frequencies are in good agreement with values assessed from untreated serial tissue sections with a mean absolute deviation of 0.16. CONCLUSION AND CLINICAL RELEVANCE: It has been demonstrated that MALDI-MSI can be combined with genetic analysis, like dPCR. Workflows enabling the subsequent analysis of proteomic and genetic markers are particularly promising for the analysis of limited sample material such as biopsy specimen.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Imagen Molecular , Mutación , Reacción en Cadena de la Polimerasa , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Humanos , Adhesión en Parafina
13.
Artículo en Inglés | MEDLINE | ID: mdl-31753813

RESUMEN

Genetic rearrangements involving the anaplastic lymphoma kinase (ALK) gene confer sensitivity to ALK tyrosine kinase inhibitors (TKIs) and superior outcome in non-small-cell lung cancer (NSCLC). However, clinical courses vary widely, and recent studies suggest that molecular profiling of ALK+ NSCLC can provide additional predictors of therapy response that could assist further individualization of patient management. As repeated tissue biopsies often pose technical difficulties and significant procedural risk, analysis of tumor constituents circulating in the blood, including ctDNA and various proteins, is increasingly recognized as an alternative method of tumor sampling ("liquid biopsy"). Here, we report the case of a KLC1-ALK-rearranged NSCLC patient responding to crizotinib treatment and demonstrate how analysis of plasma and serum biomarkers can be used to identify the ALK fusion partner and monitor therapy over time. Results of ctDNA sequencing and copy-number alteration profiling as well as serum protein concentrations at various time points during therapy reflected the current remission status and could predict the subsequent clinical course. At the time of disease progression, we identified four distinct secondary mutations in the ALK gene in ctDNA potentially causing treatment failure, accompanied by rising levels of CEA and CYFRA 21-1. Moreover, several copy-number variations were detected at the end of the treatment, including an amplification of a region on Chromosome 12 encompassing the TP53 regulator MDM2 In summary, our findings illustrate the utility of noninvasive longitudinal molecular profiling for assessing remission status, exploring mechanisms of treatment failure, predicting subsequent clinical course, and dissecting dynamics of drug-resistant clones in ALK+ lung cancer.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas Asociadas a Microtúbulos/genética , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Crizotinib/uso terapéutico , Variaciones en el Número de Copia de ADN/genética , Resistencia a Antineoplásicos/genética , Femenino , Reordenamiento Génico/genética , Humanos , Cinesinas , Biopsia Líquida/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Tirosina Quinasas Receptoras/genética , Insuficiencia del Tratamiento
14.
Cancers (Basel) ; 11(1)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669647

RESUMEN

Anaplastic lymphoma kinase (ALK) sequencing can identify resistance mechanisms and guide next-line therapy in ALK+ non-small-cell lung cancer (NSCLC), but the clinical significance of other rebiopsy findings remains unclear. We analysed all stage-IV ALK+ NSCLC patients with longitudinally assessable TP53 status treated in our institutions (n = 62). Patients with TP53 mutations at baseline (TP53mutbas, n = 23) had worse overall survival (OS) than patients with initially wild-type tumours (TP53wtbas, n = 39, 44 vs. 62 months in median, p = 0.018). Within the generally favourable TP53wtbas group, detection of TP53 mutations at progression defined a "converted" subgroup (TP53mutconv, n = 9) with inferior OS, similar to that of TP53mutbas and shorter than that of patients remaining TP53 wild-type (TP53wtprogr, 45 vs. 94 months, p = 0.043). Progression-free survival (PFS) under treatment with tyrosine kinase inhibitors (TKI) for TP53mutconv was comparable to that of TP53mutbas and also shorter than that of TP53wtprogr cases (5 and 8 vs. 13 months, p = 0.0039). Fewer TP53wtprogr than TP53mutbas or TP53mutconv cases presented with metastatic disease at diagnosis (67% vs. 91% or 100%, p < 0.05). Thus, acquisition of TP53 mutations at progression is associated with more aggressive disease, shorter TKI responses and inferior OS in ALK+ NSCLC, comparable to primary TP53 mutated cases.

15.
ACS Omega ; 4(21): 19081-19095, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31763531

RESUMEN

Following the information obtained by a rational design study, a cyclic and helical-stabilized analogue of the peptide Cm-p5 was synthetized. The cyclic monomer showed an increased activity in vitro against Candida albicans and Candida parapsilosis, compared to Cm-p5. Initially, 14 mutants of Cm-p5 were synthesized following a rational design to improve the antifungal activity and pharmacological properties. Antimicrobial testing showed that the activity was lost in each of these 14 analogues, suggesting, as a main conclusion, that a Glu-His salt bridge could stabilize Cm-p5 helical conformation during the interaction with the plasma membrane. A derivative, obtained by substitution of Glu and His for Cys, was synthesized and oxidized with the generation of a cyclic monomer with improved antifungal activity. In addition, two dimers were generated during the oxidation procedure, a parallel and antiparallel one. The dimers showed a helical secondary structure in water, whereas the cyclic monomer only showed this conformation in SDS. Molecular dynamic simulations confirmed the helical stabilizations for all of them, therefore indicating the possible essential role of the Glu-His salt bridge. In addition, the antiparallel dimer showed a moderate activity against Pseudomonas aeruginosa and a significant activity against Listeria monocytogenes. Neither the cyclic monomer nor the dimers were toxic against macrophages or THP-1 human cells. Due to its increased capacity for fungal control compared to fluconazole, its low cytotoxicity, together with a stabilized α-helix and disulfide bridges, that may advance its metabolic stability, and in vivo activity, the new cyclic Cm-p5 monomer represents a potential systemic antifungal therapeutic candidate.

16.
Oncotarget ; 8(43): 74049-74057, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088767

RESUMEN

The availability of tyrosine kinase inhibitors (TKI) during the past ten years has led to improved response and overall survival of patients suffering from metastatic clear cell renal cell carcinoma (ccRCC). However, most of these tumors will eventually progress due to resistance evolving under therapy. The objective of this pilot study was to determine whether molecular alterations in ccRCC tissues sampled over the course of the disease might be suggestive of potential therapies. We performed whole exome sequencing of nine samples from four patients in the MORE (Molecular Renal Cancer Evolution) trial. We analyzed the mutational patterns in the tissues at baseline and compared them to those detectable in biopsy samples after progression under TKI therapy. We found limited genetic concordance between primary and secondary tumor sites with private mutations in FLT4, MTOR, ITGA5, SETD2, PBRM1, and BRCA1 on progression. One patient who showed an increased mutational load in the metastasis responded to nivolumab treatment. Our data provide evidence for clonal evolution and diverse pathways leading to acquired TKI resistance of ccRCC. Acquired resistance to TKI in metastatic ccRCC is due to intra-tumor heterogeneity and clonal evolution of resistant subclones. Mutations occurring under progression might be informative for alternative targeted therapies.

17.
PLoS One ; 11(8): e0161012, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27529345

RESUMEN

Circulating cell-free DNA (cfDNA) released from cancerous tissues has been found to harbor tumor-associated alterations and to represent the molecular composition of the tumor. Recent advances in technologies, especially in next-generation sequencing, enable the analysis of low amounts of cfDNA from body fluids. We analyzed the exomes of tumor tissue and matched serum samples to investigate the molecular representation of the tumor exome in cfDNA. To this end, we implemented a workflow for sequencing of cfDNA from low serum volumes (200 µl) and performed whole-exome sequencing (WES) of serum and matched tumor tissue samples from six non-small cell lung cancer (NSCLC) patients and two control sera. Exomes, including untranslated regions (UTRs) of cfDNA were sequenced with an average coverage of 68.5x. Enrichment efficiency, target coverage, and sequencing depth of cfDNA reads were comparable to those from matched tissues. Discovered variants were compared between serum and tissue as well as to the COSMIC database of known mutations. Although not all tissue variants could be confirmed in the matched serum, up to 57% of the tumor variants were reflected in matched cfDNA with mutations in PIK3CA, ALK, and PTEN as well as variants at COSMIC annotated sites in all six patients analyzed. Moreover, cfDNA revealed a mutation in MTOR, which was not detected in the matched tissue, potentially from an untested region of the heterogeneous primary tumor or from a distant metastatic clone. WES of cfDNA may provide additional complementary molecular information about clinically relevant mutations and the clonal heterogeneity of the tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Exoma/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Análisis de Secuencia de ADN , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Mutación , Estadificación de Neoplasias
18.
Sci Rep ; 6: 33505, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27640882

RESUMEN

Long-lasting success in lung cancer therapy using tyrosine kinase inhibitors (TKIs) is rare since the tumors develop resistance due to the occurrence of molecularly altered subclones. The aim of this study was to monitor tumors over time based on the quantity of mutant plasma DNA and to identify early indications for therapy response and tumor progression. Serial plasma samples from lung adenocarcinoma patients treated with TKIs were used to quantify EGFR and KRAS mutations in circulating DNA by digital PCR. Mutant DNA levels were compared with the courses of responses to treatment with TKIs, conventional chemotherapy, radiotherapy, or combinations thereof. Variations in plasma DNA mutation levels over time were found in 15 patients. We categorize three major courses: First, signs of therapy response are associated with a fast clearing of plasma DNA mutations within a few days. Second, periods of stable disease are accompanied by either absence of mutations or fluctuation at low levels. Finally, dramatic increase of mutational load is followed by rapid tumor progression and poor patient survival. In summary, the serial assessment of EGFR mutations in the plasma of NSCLC patients allows conclusions about controlled disease and tumor progression earlier than currently available methods.


Asunto(s)
Adenocarcinoma/sangre , Adenocarcinoma/tratamiento farmacológico , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Anciano , Alelos , Análisis Mutacional de ADN , Progresión de la Enfermedad , Receptores ErbB/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Insuficiencia del Tratamiento , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA