Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2317461121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289961

RESUMEN

Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Mutación , Aclimatación/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción/genética , Frío , Aptitud Genética
2.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709680

RESUMEN

Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.

3.
Proc Natl Acad Sci U S A ; 119(40): e2212199119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161933

RESUMEN

Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.


Asunto(s)
Arabidopsis , Gravitropismo , Arabidopsis/genética , Celulosa , Gravitropismo/genética , Fosfatidilcolinas , Raíces de Plantas/genética , Polímeros , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética , Zea mays/genética
4.
Plant Physiol ; 192(2): 1016-1027, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36905371

RESUMEN

The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenotipo , Filogenia , Raíces de Plantas/metabolismo
5.
Plant J ; 112(2): 493-517, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050832

RESUMEN

The plant hormone gibberellin (GA) impacts plant growth and development differently depending on the developmental context. In the maize (Zea mays) tassel, application of GA alters floral development, resulting in the persistence of pistils. GA signaling is achieved by the GA-dependent turnover of DELLA domain transcription factors, encoded by dwarf8 (d8) and dwarf9 (d9) in maize. The D8-Mpl and D9-1 alleles disrupt GA signaling, resulting in short plants and normal tassel floret development in the presence of excess GA. However, D9-1 mutants are unable to block GA-induced pistil development. Gene expression in developing tassels of D8-Mpl and D9-1 mutants and their wild-type siblings was determined upon excess GA3 and mock treatments. Using GA-sensitive transcripts as reporters of GA signaling, we identified a weak loss of repression under mock conditions in both mutants, with the effect in D9-1 being greater. D9-1 was also less able to repress GA signaling in the presence of excess GA3 . We treated a diverse set of maize inbred lines with excess GA3 and measured the phenotypic consequences on multiple aspects of development (e.g., height and pistil persistence in tassel florets). Genotype affected all GA-regulated phenotypes but there was no correlation between any of the GA-affected phenotypes, indicating that the complexity of the relationship between GA and development extends beyond the two-gene epistasis previously demonstrated for GA and brassinosteroid biosynthetic mutants.


Asunto(s)
Proteínas de Arabidopsis , Giberelinas , Giberelinas/metabolismo , Zea mays/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Inflorescencia/metabolismo , Brasinoesteroides/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Arabidopsis/metabolismo
6.
Plant Physiol ; 184(1): 300-315, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641472

RESUMEN

Chlorophyll is a tetrapyrrole metabolite essential for photosynthesis in plants. The first committed step of chlorophyll biosynthesis is catalyzed by a multimeric enzyme, magnesium chelatase, the subunit I of which is encoded by the oil yellow1 (oy1) gene in maize (Zea mays). A range of chlorophyll contents and net CO2 assimilation rates can be achieved in maize by combining a semidominant mutant allele of oy1 (Oy1-N1989) and a cis-regulatory modifier named very oil yellow1 (vey1) that varies between different inbred lines. We previously demonstrated that these allelic interactions can delay reproductive maturity. In this study, we demonstrate that multiple gross morphological traits respond to a reduction in chlorophyll. We found that stalk width, number of lateral branches (tillers), and branching of the inflorescence decline with a decrease in chlorophyll level. Chlorophyll deficit suppressed tillering in multiple maize mutants, including teosinte branched1, Tillering1, and grassy tillers1 In contrast to these traits, plant height showed a nonlinear response to chlorophyll levels. Weak suppression of Oy1-N1989 by vey1 B73 resulted in a significant increase in mutant plant height. By contrast, enhancement of the severity of the Oy1-N1989 phenotype by the vey1 Mo17 allele resulted in reduced plant height. We demonstrate that the effects of reduced chlorophyll contents on plant growth and development are complex and depend on the trait being measured. We propose that the lack of chlorophyll exerts growth control via energy balance sensing, which is upstream of the known genetic networks for branching and architecture.


Asunto(s)
Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Monóxido de Carbono/metabolismo , Inflorescencia/metabolismo , Liasas/metabolismo , Proteínas de Plantas/genética , Zea mays/genética
7.
Plant Cell ; 30(1): 48-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263085

RESUMEN

Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.


Asunto(s)
Brasinoesteroides/farmacología , Diferenciación Celular/efectos de los fármacos , Inflorescencia/citología , Meristema/citología , Setaria (Planta)/citología , Alelos , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sitios Genéticos , Inflorescencia/efectos de los fármacos , Inflorescencia/ultraestructura , Meristema/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Setaria (Planta)/efectos de los fármacos , Setaria (Planta)/genética , Setaria (Planta)/ultraestructura , Transducción de Señal/efectos de los fármacos
8.
PLoS Pathog ; 14(10): e1007356, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30332488

RESUMEN

Adult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused by Cochliobolus carbonum race 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele, Hm1A, at the hm1 locus. In contrast, wild-type alleles of hm1 provide complete protection at all developmental stages and in every part of the maize plant. Hm1 encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization of Hm1A ruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature of Hm1A and its APR phenotype was confirmed by the generation of two new APR alleles of Hm1 by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.


Asunto(s)
Resistencia a la Enfermedad , Helminthosporium/fisiología , Oxidorreductasas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Virulencia , Zea mays/microbiología , Oxidorreductasas/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
9.
Plant Cell ; 29(12): 3269-3285, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29203634

RESUMEN

The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Epistasis Genética , Complejo Mediador/genética , Propanoles/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Supresores , Lignina/metabolismo , Malatos/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Mutación Missense/genética , Fenotipo , Fenilpropionatos/metabolismo , Solubilidad , Estrés Fisiológico/genética , Supresión Genética
10.
Plant Physiol ; 170(4): 1989-98, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26896393

RESUMEN

Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement.


Asunto(s)
Ambiente , Variación Genética , Semillas/genética , Sorghum/genética , Estudio de Asociación del Genoma Completo , Patrón de Herencia/genética , Modelos Biológicos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable
11.
Plant Physiol ; 171(4): 2633-47, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288361

RESUMEN

A small number of phytohormones dictate the pattern of plant form affecting fitness via reproductive architecture and the plant's ability to forage for light, water, and nutrients. Individual phytohormone contributions to plant architecture have been studied extensively, often following a single component of plant architecture, such as plant height or branching. Both brassinosteroid (BR) and gibberellin (GA) affect plant height, branching, and sexual organ development in maize (Zea mays). We identified the molecular basis of the nana plant2 (na2) phenotype as a loss-of-function mutation in one of the two maize paralogs of the Arabidopsis (Arabidopsis thaliana) BR biosynthetic gene DWARF1 (DWF1). These mutants accumulate the DWF1 substrate 24-methylenecholesterol and exhibit decreased levels of downstream BR metabolites. We utilized this mutant and known GA biosynthetic mutants to investigate the genetic interactions between BR and GA. Double mutants exhibited additivity for some phenotypes and epistasis for others with no unifying pattern, indicating that BR and GA interact to affect development but in a context-dependent manner. Similar results were observed in double mutant analyses using additional BR and GA biosynthetic mutant loci. Thus, the BR and GA interactions were neither locus nor allele specific. Exogenous application of GA3 to na2 and d5, a GA biosynthetic mutant, also resulted in a diverse pattern of growth responses, including BR-dependent GA responses. These findings demonstrate that BR and GA do not interact via a single inclusive pathway in maize but rather suggest that differential signal transduction and downstream responses are affected dependent upon the developmental context.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brasinoesteroides/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Zea mays/crecimiento & desarrollo , Zea mays/genética , Alelos , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sitios Genéticos , Modelos Biológicos , Mutación/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Plant Cell ; 26(1): 181-94, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24464296

RESUMEN

Whole-genome duplication resulting from polyploidy is ubiquitous in the evolutionary history of plant species. Yet, polyploids must overcome the meiotic challenge of pairing, recombining, and segregating more than two sets of chromosomes. Using genomic sequencing of synthetic and natural allopolyploids of Arabidopsis thaliana and Arabidopsis arenosa, we determined that dosage variation and chromosomal translocations consistent with homoeologous pairing were more frequent in the synthetic allopolyploids. To test the role of structural chromosomal differentiation versus genetic regulation of meiotic pairing, we performed sequenced-based, high-density genetic mapping in F2 hybrids between synthetic and natural lines. This F2 population displayed frequent dosage variation and deleterious homoeologous recombination. The genetic map derived from this population provided no indication of structural evolution of the genome of the natural allopolyploid Arabidopsis suecica, compared with its predicted parents. The F2 population displayed variation in meiotic regularity and pollen viability that correlated with a single quantitative trait locus, which we named BOY NAMED SUE, and whose beneficial allele was contributed by A. suecica. This demonstrates that an additive, gain-of-function allele contributes to meiotic stability and fertility in a recently established allopolyploid and provides an Arabidopsis system to decipher evolutionary and molecular mechanisms of meiotic regularity in polyploids.


Asunto(s)
Arabidopsis/genética , Meiosis/genética , Sitios de Carácter Cuantitativo , Arabidopsis/citología , Cromosomas de las Plantas/metabolismo , Dosificación de Gen , Genoma de Planta , Recombinación Homóloga , Meiosis/fisiología , Poliploidía , Translocación Genética
13.
Plant J ; 80(5): 797-808, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25256367

RESUMEN

Phytohormone homeostasis is essential for proper growth and development of plants. To understand the growth mechanisms mediated by hormonal levels, we isolated a gulliver1 (gul1) mutant that had tall stature in the presence of both brassinazole and the light. The gul1 phenotype depended on functional BR biosynthesis; the genetic introduction of dwarf4, a BR biosynthetic mutation, masked the long hypocotyl phenotype of gul1. Furthermore, BR biosynthesis was dramatically enhanced, such that the level of 22-hydroxy campesterol was 5.8-fold greater in gul1. Molecular cloning revealed that gul1 was a missense mutation, resulting in a glycine to arginine change at amino acid 116 in SUPERROOT2 (CYP83B1), which converts indole acetaldoxime to an S-alkyl thiohydroximate adduct in the indole glucosinolate pathway. Auxin metabolite profiling coupled with quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of auxin biosynthetic genes revealed that gul1/sur2-7 activated multiple alternative branches of tryptophan-dependent auxin biosynthetic pathways. Furthermore, exogenous treatment of gul1/sur2-7 with BRs caused adventitious roots from hypocotyls, indicative of an increased response to BRs relative to wild-type. Different from severe alleles of sur2, gul1/sur2-7 lacked 'high-auxin' phenotypes that include stunted growth and callus-like disintegration of hypocotyl tissues. The auxin level in gul1/sur2-7 was only 1.6-fold greater than in the wild-type, whereas it was 4.2-fold in a severe allele like sur2-8. Differences in auxin content may account for the range of phenotypes observed among the sur2 alleles. This unusual allele provides long-sought evidence for a synergistic interaction between auxin and BRs in promoting growth in Arabidopsis at the level of their biosynthetic enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación , Sustitución de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides/farmacología , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Mutación Missense , Oximas/metabolismo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal
14.
PLoS Genet ; 8(12): e1003093, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284289

RESUMEN

Genome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos. Nevertheless, stable polyploid species occur in both plants and animals. Understanding how natural selection enabled these species to overcome early challenges can provide important insights into the mechanisms by which core cellular functions can adapt to perturbations of the genomic environment. Arabidopsis arenosa includes stable tetraploid populations and is related to well-characterized diploids A. lyrata and A. thaliana. It thus provides a rare opportunity to leverage genomic tools to investigate the genetic basis of polyploid stabilization. We sequenced the genomes of twelve A. arenosa individuals and found signatures suggestive of recent and ongoing selective sweeps throughout the genome. Many of these are at genes implicated in genome maintenance functions, including chromosome cohesion and segregation, DNA repair, homologous recombination, transcriptional regulation, and chromatin structure. Numerous encoded proteins are predicted to interact with one another. For a critical meiosis gene, ASYNAPSIS1, we identified a non-synonymous mutation that is highly differentiated by cytotype, but present as a rare variant in diploid A. arenosa, indicating selection may have acted on standing variation already present in the diploid. Several genes we identified that are implicated in sister chromatid cohesion and segregation are homologous to genes identified in a yeast mutant screen as necessary for survival of polyploid cells, and also implicated in genome instability in human diseases including cancer. This points to commonalities across kingdoms and supports the hypothesis that selection has acted on genes controlling genome integrity in A. arenosa as an adaptive response to genome doubling.


Asunto(s)
Arabidopsis/genética , Diploidia , Inestabilidad Genómica , Tetraploidía , Adaptación Biológica/genética , Segregación Cromosómica/genética , Metilación de ADN , Genoma de Planta , Meiosis/genética
15.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37548268

RESUMEN

Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Zea mays/genética , Mutación , Arabidopsis/genética , Genes de Plantas , MicroARNs/genética , Regulación de la Expresión Génica de las Plantas , Carioferinas/genética , Proteínas de Arabidopsis/genética
16.
Science ; 382(6674): eadg8940, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033071

RESUMEN

The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.


Asunto(s)
Productos Agrícolas , Domesticación , Hibridación Genética , Zea mays , México , Fenotipo , Zea mays/genética , Variación Genética , Productos Agrícolas/genética
17.
PLoS Biol ; 6(12): 2707-20, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19071961

RESUMEN

The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Cruzamientos Genéticos , Diploidia , Genes de Plantas/fisiología , Hibridación Genética/genética , Microscopía Confocal , Poliploidía , Sitios de Carácter Cuantitativo , Semillas/fisiología , Factores de Transcripción/genética
18.
Curr Opin Plant Biol ; 59: 101985, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33418403

RESUMEN

Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.


Asunto(s)
Raíces de Plantas , Poaceae , Agricultura , Fitomejoramiento , Zea mays
19.
Plant Direct ; 5(6): e00326, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34136747

RESUMEN

Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin-regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called slim shady, in an annotated insertion line in IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR). Overexpression of the IRR gene failed to rescue the slim shady phenotype and characterization of a second T-DNA allele of IRR found that it had a wild-type (WT) hypocotyl length. The slim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid-auxin-phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally, slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism in PHYTOCHROME B was responsible for the slim shady phenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase-related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses with phyb-9 confirmed that slim shady is a mutant allele of PHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin-dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T-DNA stocks.

20.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-36351283

RESUMEN

The nuclear pore complex (NPC) regulates the movement of macromolecules between the nucleus and cytoplasm. Dysfunction of many components of the NPC results in human genetic diseases, including triple A syndrome (AAAS) as a result of mutations in ALADIN. Here, we report a nonsense mutation in the maize ortholog, aladin1 (ali1-1), at the orthologous amino acid residue of an AAAS allele from humans, alters plant stature, tassel architecture, and asymmetric divisions of subsidiary mother cells (SMCs). Crosses with the stronger nonsense allele ali1-2 identified complex allele interactions for plant height and aberrant SMC division. RNA-seq analysis of the ali1-1 mutant identified compensatory transcript accumulation for other NPC components as well as gene expression consequences consistent with conservation of ALADIN1 functions between humans and maize. These findings demonstrate that ALADIN1 is necessary for normal plant development, shoot architecture, and asymmetric cell division in maize.


Asunto(s)
Poro Nuclear , Zea mays , Humanos , Zea mays/fisiología , Poro Nuclear/genética , Poro Nuclear/metabolismo , División Celular Asimétrica , División Celular/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA