Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Behav Brain Res ; 346: 86-95, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29191577

RESUMEN

Cortical electrical stimulation (CES) has shown to be an effective therapeutic alternative for neuropathic pain refractory to pharmacological treatment. The primary motor cortex(M1) was the main cortical target used in the vast majority of both invasive and non-invasive studies. Despite positive results M1-based approaches still fail to relieve pain in a significant proportion of individuals. It has been advocated that the direct stimulation of cortical areas directly implicated in the central integration of pain could increase the efficacy of analgesic brain stimulation. Here, we evaluated the behavioral effects of electrical stimulation of the insular cortex (ESI) on pain sensitivity in an experimental rat model of peripheral neuropathy, and have described the pathways involved. Animals underwent chronic constriction of the sciatic nerve in the right hind limb and had concentric electrodes implanted in the posterior dysranular insular cortex. Mechanical nociception responses were evaluated before and at the end of a 15-min session of ESI (60Hz, 210µs, 1V). ESI reversed mechanical hypersensitivity in the paw contralateral to the brain hemisphere stimulated, without inducing motor impairment in the open-field test. Pharmacological blockade of µ-opioid (MOR) or type 1-cannabinoid receptors (CB1R) abolished ESI-induced antinociceptive effects. Evaluation of CB1R and MOR spatial expression demonstrated differential modulation of CB1R and MOR in the periaqueductal gray matter (PAG) of ESI-treated rats in sub-areas involved in pain processing/modulation. These results indicate that ESI induces antinociception by functionally modulating opioid and cannabinoid systems in the PAG pain circuitry in rats with experimentally induced neuropathic pain.


Asunto(s)
Corteza Cerebral/fisiopatología , Dolor Crónico/fisiopatología , Dolor Crónico/terapia , Estimulación Encefálica Profunda , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Enfermedades del Sistema Nervioso Periférico/terapia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Dolor Nociceptivo/fisiopatología , Dolor Nociceptivo/terapia , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/metabolismo , Antagonistas de la Serotonina/farmacología , Tacto
2.
PLoS One ; 11(4): e0153506, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27071073

RESUMEN

Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.


Asunto(s)
Nocicepción , Sustancia Gris Periacueductal/fisiopatología , Estimulación Transcraneal de Corriente Directa , Animales , Electrodos , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Masculino , Sustancia Gris Periacueductal/patología , Células del Asta Posterior/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA