Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Med Genet A ; 164A(10): 2443-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24665072

RESUMEN

Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients' skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient's own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Displasia Ectodérmica/genética , Anomalías del Ojo/genética , Párpados/anomalías , Animales , Labio Leporino/patología , Fisura del Paladar/patología , Modelos Animales de Enfermedad , Displasia Ectodérmica/patología , Epidermis/patología , Anomalías del Ojo/patología , Párpados/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Mutación/genética , Proteínas Supresoras de Tumor/genética
2.
Future Sci OA ; 10(1): FSO964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817352

RESUMEN

Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.


Combined chemical and CRISPRa-mediated approach leads to efficient generation of human iPSCs.

3.
Cell Commun Adhes ; 21(1): 55-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24460201

RESUMEN

Desmosomes are intercellular junctions that provide tissues with structural stability. These junctions might also act as signaling centers that transmit environmental clues to the cell, thereby affecting cell differentiation, migration, and proliferation. The importance of desmosomes is underscored by devastating skin and heart diseases caused by mutations in desmosomal genes. Recent observations suggest that abnormal desmosomal protein expression might indirectly contribute to skin disorders previously not linked to these proteins. For example, it has been postulated that reduced desmosomal protein expression occurs in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC), a skin fragility disorder caused by mutations in the transcription factor TP63. Currently, it is not clear how these changes in desmosomal gene expression contribute to AEC. We will discuss new approaches that combine in vitro and in vivo models to elucidate the role of desmosomal gene deregulation in human skin diseases such as AEC.


Asunto(s)
Labio Leporino/metabolismo , Fisura del Paladar/metabolismo , Desmosomas/metabolismo , Displasia Ectodérmica/metabolismo , Anomalías del Ojo/metabolismo , Párpados/anomalías , Modelos Biológicos , Animales , Labio Leporino/genética , Labio Leporino/patología , Fisura del Paladar/genética , Fisura del Paladar/patología , Desmocolinas/genética , Desmocolinas/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Párpados/metabolismo , Párpados/patología , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Pancreas ; 41(6): 962-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22450367

RESUMEN

OBJECTIVE: This study investigated the utility of advanced computational techniques to large-scale genome-based data to identify novel genes that govern murine pancreatic development. METHODS: An expression data set for mouse pancreatic development was complemented with high-throughput data analyzer to identify and prioritize novel genes. Quantitative real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry were used to validate selected genes. RESULTS: Four new genes whose roles in the development of murine pancreas have not previously been established were identified: cystathionine ß-synthase (Cbs), Meis homeobox 1, growth factor independent 1, and aldehyde dehydrogenase 18 family, member A1. Their temporal expression during development was documented. Cbs was localized in the cytoplasm of the tip cells of the epithelial chords of the undifferentiated progenitor cells at E12.5 and was coexpressed with the pancreatic and duodenal homeobox 1 and pancreas-specific transcription factor, 1a-positive cells. In the adult pancreas, Cbs was localized primarily within the acinar compartment. CONCLUSIONS: In silico analysis of high-throughput microarray data in combination with background knowledge about genes provides an additional reliable method of identifying novel genes. To our knowledge, the expression and localization of Cbs have not been previously documented during mouse pancreatic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genómica , Morfogénesis/genética , Páncreas/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Animales , Biología Computacional , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Genómica/métodos , Edad Gestacional , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/embriología , Páncreas/crecimiento & desarrollo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA