Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Therm Biol ; 117: 103698, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37734348

RESUMEN

PURPOSE: To determine whether carbohydrate ingestion would reduce cognitive dysfunction in humans following long duration passive heat stress (PHS) versus consuming electrolytes alone. METHODS: Fifteen young (27 ± 4 y) healthy adults were exposed to 120 min of PHS through the use of a liquid perfused suit (50 °C) on two randomized visits. Subjects consumed fluids supplemented with electrolytes (E) or electrolytes + carbohydrates (E + C). Pre- and post-heat stress, body mass (BM) and plasma osmolality (pOsm) were measured. Heart rate (HR), blood pressure (BP), Physiological Strain Index (PSI), core temperature (Tc), plasma glucose, respiration rate (RR), end-tidal CO2 (PetCO2) and internal carotid artery (ICA) blood flow were recorded at baseline and every 15 min of heat stress. Cognitive function was assessed via the Automated Neuropsychological Assessment Metric at baseline and at 30- and 120 min during heat stress. RESULTS: There were no significant differences between fluid conditions for BM, pOsm, PSI, Tc, RR or PetCO2. Plasma glucose was ∼75% greater in the E + C condition compared to the E condition after 90 min of PHS (P < 0.05). Cognitive function (120 min) was impaired following PHS only in E condition (P < 0.05) and performance on complex cognitive tasks were better by ∼22-340% in the E + C vs. E (P < 0.05). Compared to the E condition, HR and BP were lower and ICA blood flow, vascular conductance, and glucose delivery was ∼90% greater in the E + C after 90 min of PHS (P < 0.05). CONCLUSIONS: These data are the first to demonstrate that carbohydrate ingestion may have a protective effect on cognitive function during long duration PHS. Furthermore, this protection was associated with preserved ICA blood flow and glucose delivery to the brain.

2.
J Physiol ; 600(14): 3265-3285, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35575293

RESUMEN

Skeletal muscle haemodynamics and circulating adenosine triphosphate (ATP) responses during hypoxia and exercise are blunted in older (OA) vs. young (YA) adults, which may be associated with impaired red blood cell (RBC) ATP release. Rho-kinase inhibition improves deoxygenation-induced ATP release from OA isolated RBCs. We tested the hypothesis that Rho-kinase inhibition (via fasudil) in vivo would improve local haemodynamic and ATP responses during hypoxia and exercise in OA. Healthy YA (25 ± 3 years; n = 12) and OA (65 ± 5 years; n = 13) participated in a randomized, double-blind, placebo-controlled, crossover study on two days (≥5 days between visits). A forearm deep venous catheter was used to administer saline/fasudil and sample venous plasma ATP ([ATP]V ). Forearm vascular conductance (FVC) and [ATP]V were measured at rest, during isocapnic hypoxia (80% SpO2${S_{{\rm{p}}{{\rm{O}}_{\rm{2}}}}}$ ), and during graded rhythmic handgrip exercise that was similar between groups (5, 15 and 25% maximum voluntary contraction (MVC)). Isolated RBC ATP release was measured during normoxia/hypoxia. With saline, ΔFVC was lower (P < 0.05) in OA vs. YA during hypoxia (∼60%) and during 15 and 25% MVC (∼25-30%), and these impairments were abolished with fasudil. Similarly, [ATP]V and ATP effluent responses from normoxia to hypoxia and rest to 25% MVC were lower in OA vs. YA and improved with fasudil (P < 0.05). Isolated RBC ATP release during hypoxia was impaired in OA vs. YA (∼75%; P < 0.05), which tended to improve with fasudil in OA (P = 0.082). These data suggest Rho-kinase inhibition improves haemodynamic responses to hypoxia and moderate intensity exercise in OA, which may be due in part to improved circulating ATP. KEY POINTS: Skeletal muscle blood flow responses to hypoxia and exercise are impaired with age. Blunted increases in circulating ATP, a vasodilator, in older adults may contribute to age-related impairments in haemodynamics. Red blood cells (RBCs) are a primary source of circulating ATP, and treating isolated RBCs with a Rho-kinase inhibitor improves age-related impairments in deoxygenation-induced RBC ATP release. In this study, treating healthy older adults systemically with the Rho-kinase inhibitor fasudil improved blood flow and circulating ATP responses during hypoxia and moderate intensity handgrip exercise compared to young adults, and also tended to improve isolated RBC ATP release. Improved blood flow regulation with fasudil was also associated with increased skeletal muscle oxygen delivery during hypoxia and exercise in older adults. This is the first study to demonstrate that Rho-kinase inhibition can significantly improve age-related impairments in haemodynamic and circulating ATP responses to physiological stimuli, which may have therapeutic implications.


Asunto(s)
Adenosina Trifosfato , Fuerza de la Mano , Adenosina Trifosfato/farmacología , Adulto , Estudios Cruzados , Antebrazo/irrigación sanguínea , Fuerza de la Mano/fisiología , Hemodinámica , Humanos , Hipoxia , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional , Adulto Joven , Quinasas Asociadas a rho
3.
J Therm Biol ; 100: 103026, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34503773

RESUMEN

INTRODUCTION: To determine if electrolyte or carbohydrate supplementation vs. water would limit the magnitude of dehydration and decline in cognitive function in humans following long-duration hyperthermic-exercise. METHODS: 24 subjects performed 3 visits of 2 h walking (3mph/7% grade) in an environmental chamber (33 °C/10% relative humidity). In random order, subjects consumed water (W), electrolytes (Gatorade Zero; E), or electrolytes+carbohydrates (Gatorade; E+C). Throughout exercise (EX), subjects carried a 23 kg pack and drank ad-libitum. Pre-and post-EX, body mass (BM) and plasma osmolality (pOsm) were measured. Physiological Strain Index (PSI) and core temperature (TC) were recorded every 15 min. Plasma glucose (GLU) was measured every 30 min. Cognitive processing (SCWT) was measured post-EX and compared to baseline (BL). A subset of 8 subjects performed a normothermic (N) protocol (21 °C/ambient humidity) to ascertain how the exercise stimulus influenced hydration status and cognition without heat. RESULTS: There were no significant differences between fluid conditions (W, E, E+C) for BM loss (Δ2.5 ± 0.2, 2.5 ± 0.2, 2.3 ± 0.2 kg), fluid consumption (1.9 ± 0.2, 1.9 ± 0.2, 1.8 ± 0.2L), pOsm (Δ1.5 ± 2.7, 2.2 ± 2.4, 2.0 ± 1.5 mmol/L), peak-PSI (7.5 ± 0.4, 7.0 ± 0.6, 7.9 ± 0.5), and peak-TC (38.7 ± 0.1, 38.6 ± 0.2, 38.8 ± 0.2 °C). GLU decreased significantly in W and E, whereas it increased above BL in E+C at 60, 90, and 120 min (P < 0.05). Compared to BL values (43.6 ± 26 ms), SCWT performance significantly decreased in all conditions (463 ± 93, 422 ± 83, 140 ± 52 ms, P < 0.05). Importantly, compared to W and E, the impairment in SCWT was significantly attenuated in E+C (P < 0.05). As expected, when compared to the heat-stress protocol (W, E, E+C), N resulted in lower BM loss, fluid consumption, and peak-PSI (1.1 ± 0.1 kg, 1.2 ± 0.7L, 4.8, respectively), and improved SCWT performance. CONCLUSIONS: These data are the first to suggest that, independent of supplementation variety, cognitive processing significantly decreases immediately following long-duration exercise in the heat in healthy humans. Compared to water and fluids supplemented with only electrolytes, fluids supplemented with carbohydrates significantly blunts this decrease in cognitive function.


Asunto(s)
Cognición/efectos de los fármacos , Ejercicio Físico , Glucosa/farmacología , Trastornos de Estrés por Calor/prevención & control , Soluciones Isotónicas/farmacología , Adulto , Suplementos Dietéticos , Femenino , Fluidoterapia , Glucosa/administración & dosificación , Glucosa/uso terapéutico , Trastornos de Estrés por Calor/tratamiento farmacológico , Calor , Humanos , Soluciones Isotónicas/administración & dosificación , Soluciones Isotónicas/uso terapéutico , Masculino , Distribución Aleatoria
4.
J Physiol ; 598(13): 2621-2636, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32329892

RESUMEN

KEY POINTS: During exercise, blood flow to working skeletal muscle increases in parallel with contractile activity such that oxygen delivery is sufficient to meet metabolic demand. K+ released from active skeletal muscle fibres could facilitate vasodilatation in proportion to the degree of muscle fibre recruitment. Once released, K+ stimulates inwardly rectifying K+ (KIR ) channels on the vasculature to elicit an increase in blood flow. In the present study, we demonstrate that KIR channels mediate the rapid vasodilatory response to an increase in exercise intensity. We also show that KIR channels augment vasodilatation during exercise which demands greater muscle fibre recruitment independent of the total amount of work performed. These results suggest that K+ plays a key role in coupling the magnitude of vasodilatation to the degree of contractile activity. Ultimately, the findings from this study help us understand the signalling mechanisms that regulate muscle blood flow in humans. ABSTRACT: Blood flow to active skeletal muscle is augmented with greater muscle fibre recruitment. We tested whether activation of inwardly rectifying potassium (KIR ) channels underlies vasodilatation with elevated muscle fibre recruitment when work rate is increased (Protocol 1) or held constant (Protocol 2). We assessed forearm vascular conductance (FVC) during rhythmic handgrip exercise under control conditions and during local inhibition of KIR channels (intra-arterial BaCl2 ). In Protocol 1, healthy volunteers performed mild handgrip exercise for 3 min, then transitioned to moderate intensity for 30 s. BaCl2 eliminated vasodilatation during the first contraction at the moderate workload (ΔFVC, BaCl2 : -1 ± 17 vs. control: 30 ± 28 ml min-1  100 mmHg-1 ; n = 9; P = 0.004) and attenuated the 30 s area under the curve by 56 ± 14% (n = 9; P < 0.0001). In Protocol 2, participants performed two exercise bouts in which muscle fibre recruitment was manipulated while total contractile work was held constant via reciprocal changes in contraction frequency: (1) low fibre recruitment, with contractions at 12.5% maximal voluntary contraction once every 4 s and (2) high fibre recruitment, with contractions at 25% maximal voluntary contraction once every 8 s. Under control conditions, steady-state FVC was augmented in high vs. low fibre recruitment (211 ± 90 vs. 166 ± 73 ml min-1 ⋅100 mmHg-1 ; n = 10; P = 0.0006), whereas BaCl2 abolished the difference between high and low fibre recruitment (134 ± 59 vs. 134 ± 63 ml min-1  100 mmHg-1 ; n = 10; P = 0.85). These findings demonstrate that KIR channel activation is a key mechanism linking local vasodilatation with muscle fibre recruitment during exercise.


Asunto(s)
Canales de Potasio de Rectificación Interna , Vasodilatación , Antebrazo , Fuerza de la Mano , Humanos , Contracción Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Flujo Sanguíneo Regional
5.
J Physiol ; 598(12): 2323-2336, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32306393

RESUMEN

KEY POINTS: The ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction (functional sympatholysis) is critical for maintaining blood flow during exercise-mediated sympathoexcitation. Functional sympatholysis and endothelial function are impaired with ageing, resulting in compromised blood flow and oxygen delivery to contracting skeletal muscle during exercise. In the present study, intra-arterial infusion of ACh or ATP to augment endothelium-dependent signalling during exercise attenuated α1 -adrenergic vasoconstriction in the contracting muscle of older adults. The vascular signalling mechanisms capable of functional sympatholysis are preserved in healthy ageing, and thus the age-related impairment in functional sympatholysis probably results from the loss of a functional signal (e.g. plasma [ATP]) as opposed to an intrinsic endothelial dysfunction. ABSTRACT: The ability of contracting skeletal muscle to attenuate sympathetic α-adrenergic vasoconstriction ('functional sympatholysis') is impaired with age. In young adults, increasing endothelium-dependent vasodilatory signalling during mild exercise augments sympatholysis. In the present study, we tested the hypothesis that increasing endothelium-dependent signalling during exercise in older adults can improve sympatholysis. In 16 older individuals (Protocol 1, n = 8; Protocol 2, n = 8), we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to local intra-arterial infusion of phenylephrine (PE; α1 -agonist) during (i) infusion of an endothelium-dependent vasodilator alone (Protocol 1: ACh or Protocol 2: low dose ATP); (ii) mild handgrip exercise (5% maximum voluntary contraction; MVC); (iii) moderate handgrip exercise (15% MVC); and (iv) mild or moderate handgrip exercise + infusion of ACh or ATP to augment endothelium-dependent signalling. PE caused robust vasoconstriction in resting skeletal muscle during control vasodilator infusions (ΔFVC: ACh: -31 ± 3 and ATP: -30 ± 4%). PE-mediated vasoconstriction was not attenuated by mild or moderate intensity exercise (ΔFVC: 5% MVC: -30 ± 9; 15% MVC: -33 ± 8%; P > 0.05 vs. control ACh and ATP), indicative of impaired sympatholysis, and ACh or ATP infusion during mild exercise did not impact this response. However, augmentation of endothelium-dependent signalling via infusion of ACh or ATP during moderate intensity exercise attenuated PE-mediated vasoconstriction (ΔFVC: -13 ± 1 and -19 ± 5%, respectively; P < 0.05 vs. all conditions). Our findings demonstrate that, given a sufficient stimulus, endothelium-dependent sympatholysis remains intact in older adults. Strategies aimed at activating such pathways represent a viable approach for improving sympatholysis and thus tissue blood flow and oxygen delivery in older adults.


Asunto(s)
Fuerza de la Mano , Contracción Muscular , Anciano , Endotelio , Humanos , Músculo Esquelético , Flujo Sanguíneo Regional , Sistema Nervioso Simpático , Vasoconstricción , Vasodilatación , Adulto Joven
6.
Exp Physiol ; 105(1): 88-95, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31762131

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the effect of an elevated baseline blood flow, induced by high-dose intra-arterial infusion of either adenosine or ATP, on the rapid-onset vasodilatory response to a single forearm muscle contraction? What is the main finding and its importance? The peak response to a single contraction is unaffected by augmented baseline blood flow, and thus, is likely to be attributable to a feedforward vasodilatory mechanism. ABSTRACT: The hyperaemic responses to single muscle contractions are proportional to exercise intensity, which, in turn, is proportional to tissue metabolic demand. Hence, we tested the hypothesis that the rapid-onset vasodilatory response after a single muscle contraction would be unaffected when baseline blood flow was increased via high-dose intra-arterial infusion of either adenosine (ADO) or ATP. Twenty-four healthy young participants (28 ± 1 years) performed a single forearm contraction (20% maximal voluntary contraction) 75 min after commencement of a continuous infusion of ADO (n = 6), ATP (n = 8) or saline (control; n = 10). Brachial artery diameter and blood velocity were measured using Doppler ultrasound. Resting forearm vascular conductance (FVC; in millilitres per minute per 100 mmHg per decilitre of forearm volume) was significantly higher during ADO (33 ± 17) and ATP infusion (33 ± 17) compared with the control infusion (8 ± 3; P < 0.05). The peak FVCs post-contraction during ADO and ATP infusions were significantly greater than during the control infusion (P < 0.05), but not different from one another. The peak change in FVC from baseline was similar in all three conditions (control, 14 ± 1; ADO, 24 ± 2; and ATP, 23 ± 6; P = 0.15). Total FVC (area under the curve) did not differ significantly between ADO and ATP (333 ± 69 and 440 ± 125); however, total FVC during ATP infusion was significantly greater compared with the control value (150 ± 19; P < 0.05). We conclude that the peak response to a single contraction is unaffected by augmented baseline blood flow and is therefore likely to be attributable to a feedforward vasodilatory mechanism.


Asunto(s)
Ejercicio Físico , Antebrazo/irrigación sanguínea , Contracción Muscular , Músculo Esquelético/fisiología , Vasodilatación , Adenosina/administración & dosificación , Adenosina Trifosfato/administración & dosificación , Adulto , Arteria Braquial , Femenino , Humanos , Masculino , Flujo Sanguíneo Regional , Adulto Joven
7.
Environ Res ; 180: 108831, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648072

RESUMEN

Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 µg/m3, liquefied petroleum gas = 10 µg/m3, gasifier = 35 µg/m3, fan rocket = 100 µg/m3, rocket elbow = 250 µg/m3, three stone fire = 500 µg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Análisis de la Onda del Pulso , Humo , Adulto , Presión Sanguínea , Culinaria , Femenino , Humanos , Masculino , Humo/efectos adversos , Voluntarios , Adulto Joven
8.
J Therm Biol ; 89: 102575, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32364968

RESUMEN

INTRODUCTION: The purpose of this study was to determine the effects of ad libitum flavor and fluid intake on changes in body mass (BM) and physiological strain during moderate intensity exercise in the heat. METHODS: Ten subjects (24±3yrs, 7M/3F) performed 60 min of treadmill walking at 1.3 m/s and 7% grade in an environmental chamber set to 33 °C and 10% relative humidity while carrying a 22.7 kg pack on two different occasions. Subjects consumed either plain water or water plus flavor (Infuze), ad libitum, at each visit. Pre and post exercise, fluid consumption (change in fluid reservoir weight) and BM (nude) were measured. During exercise, heart rate (HR), systolic blood pressure (SBP), rate of perceived exertion (RPE), oxygen consumption (VO2), respiratory exchange ratio (RER), core temperature (TC), and physiological strain index (PSI) were recorded every 15 min during exercise. RESULTS: No significant differences were observed for fluid consumption between fluid conditions (512 ± 97.2 mL water vs. 414.3 ± 62.5 mL Infuze). Despite a significant decrease from baseline, there were no significant differences in overall change of BM (Δ -1.18 vs. -0.64 Kg) or percent body weight loss for water and Infuze conditions, respectively (1.58 ± 0.6 and 0.79 ± 0.2%). Furthermore, there were no significant differences in HR (144 ± 6 vs. 143 ± 8 bpm), SBP (157 ± 5 vs. 155 ± 5 mmHg), RPE, VO2 (27.4 ± 0.9 vs. 28.1 ± 1.2 ml/Kg/min), RER, TC (38.1 ± 0.1 vs. 37.0 ± 0.1 °C), and peak PSI (5.4 ± 0.4 vs. 5.7 ± 0.8) between conditions. CONCLUSIONS: Offering individuals the choice to actively manipulate flavor strength did not significantly influence ad libitum fluid consumption, fluid loss, or physiological strain during 60 min of moderate intensity exercise in the heat.


Asunto(s)
Ingestión de Líquidos/efectos de los fármacos , Aromatizantes/farmacología , Calor , Acondicionamiento Físico Humano/métodos , Esfuerzo Físico/efectos de los fármacos , Pérdida Insensible de Agua/efectos de los fármacos , Adolescente , Adulto , Regulación de la Temperatura Corporal , Humanos , Masculino , Distribución Aleatoria , Pérdida de Peso/efectos de los fármacos
9.
J Physiol ; 597(17): 4503-4519, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31310005

RESUMEN

KEY POINTS: Red blood cells (RBCs) release ATP in response to deoxygenation, which can increase blood flow to help match oxygen supply with tissue metabolic demand. This release of ATP is impaired in RBCs from older adults, but the underlying mechanisms are unknown. In this study, improving RBC deformability in older adults restored deoxygenation-induced ATP release, whereas decreasing RBC deformability in young adults reduced ATP release to the level of that of older adults. In contrast, treating RBCs with a phosphodiesterase 3 inhibitor did not affect ATP release in either age group, possibly due to intact intracellular signalling downstream of deoxygenation as indicated by preserved cAMP and ATP release responses to pharmacological Gi protein activation in RBCs from older adults. These findings are the first to demonstrate that the age-related decrease in RBC deformability is a primary mechanism of impaired deoxygenation-induced ATP release, which may have implications for treating impaired vascular control with advancing age. ABSTRACT: In response to haemoglobin deoxygenation, red blood cells (RBCs) release ATP, which binds to endothelial purinergic receptors and stimulates vasodilatation. This ATP release is impaired in RBCs from older vs. young adults, but the underlying mechanisms are unknown. Using isolated RBCs from young (24 ± 1 years) and older (65 ± 2 years) adults, we tested the hypothesis that age-related changes in RBC deformability (Study 1) and cAMP signalling (Study 2) contribute to the impairment. RBC ATP release during normoxia ( PO2 ∼112 mmHg) and hypoxia ( PO2 ∼20 mmHg) was quantified with the luciferin-luciferase technique following RBC incubation with Y-27632 (Rho-kinase inhibitor to increase deformability), diamide (cell-stiffening agent), cilostazol (phosphodiesterase 3 inhibitor), or vehicle control. The mean change in RBC ATP release from normoxia to hypoxia in control conditions was significantly impaired in older vs. young (∼50% vs. ∼120%; P < 0.05). RBC deformability was also lower in older vs. young as indicated by a higher RBC transit time (RCTT) measured by blood filtrometry (RCTT: 8.541 ± 0.050 vs. 8.234 ± 0.098 a.u., respectively; P < 0.05). Y-27632 improved RBC deformability (RCTT: 8.228 ± 0.083) and ATP release (111.7 ± 17.2%) in older and diamide decreased RBC deformability (RCTT: 8.955 ± 0.114) and ATP release (67.4 ± 11.8%) in young (P < 0.05), abolishing the age group differences (P > 0.05). Cilostazol did not change ATP release in either age group (P > 0.05), and RBC cAMP and ATP release to pharmacological Gi protein activation was similar in both groups (P > 0.05). We conclude that decreased RBC deformability is a primary contributor to age-related impairments in RBC ATP release, which may have implications for impaired vascular control with advancing age.


Asunto(s)
Adenosina Trifosfato/metabolismo , Eritrocitos/metabolismo , Adulto , Anciano , Amidas/farmacología , Eritrocitos/efectos de los fármacos , Femenino , Humanos , Hipoxia/metabolismo , Masculino , Persona de Mediana Edad , Piridinas/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Adulto Joven
10.
J Physiol ; 597(5): 1321-1335, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30506579

RESUMEN

KEY POINTS: In humans, the vasodilatory response to skeletal muscle contraction is mediated in part by activation of inwardly rectifying potassium (KIR ) channels. Evidence from animal models suggest that KIR channels serve as electrical amplifiers of endothelium-dependent hyperpolarization (EDH). We found that skeletal muscle contraction amplifies vasodilatation to the endothelium-dependent agonist ACh, whereas there was no change in the vasodilatory response to sodium nitroprusside, an endothelium-independent nitric oxide donor. Blockade of KIR channels reduced the exercise-induced amplification of ACh-mediated vasodilatation. Conversely, pharmacological activation of KIR channels in quiescent muscle via intra-arterial infusion of KCl independently amplified the vasodilatory response to ACh. This study is the first in humans to demonstrate that specific endothelium-dependent vasodilatory signalling is amplified in the vasculature of contracting skeletal muscle and that KIR channels may serve as amplifiers of EDH-like vasodilatory signalling in humans. ABSTRACT: The local vasodilatory response to muscle contraction is due in part to the activation of inwardly rectifying potassium (KIR ) channels. Evidence from animal models suggest that KIR channels function as 'amplifiers' of endothelium-dependent vasodilators. We tested the hypothesis that contracting muscle selectively amplifies endothelium-dependent vasodilatation via activation of KIR channels. We measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to local intra-arterial infusion of ACh (endothelium-dependent dilator) during resting conditions, handgrip exercise (5% maximum voluntary contraction) or sodium nitroprusside (SNP; endothelium-independent dilator) which served as a high-flow control condition (n = 7, young healthy men and women). Trials were performed before and after blockade of KIR channels via infusion of barium chloride. Exercise augmented peak ACh-mediated vasodilatation (ΔFVC saline: 117 ± 14; exercise: 236 ± 21 ml min-1 (100 mmHg)-1 ; P < 0.05), whereas SNP did not impact ACh-mediated vasodilatation. Blockade of KIR channels attenuated the exercise-induced augmentation of ACh. In eight additional subjects, SNP was administered as the experimental dilator. In contrast to ACh, exercise did not alter SNP-mediated vasodilatation (ΔFVC saline: 158 ± 35; exercise: 121 ± 22 ml min-1 (100 mmHg)-1 ; n.s.). Finally, in a subset of six subjects, direct pharmacological activation of KIR channels in quiescent muscle via infusion of KCl amplified peak ACh-mediated vasodilatation (ΔFVC saline: 97 ± 15, KCl: 142 ± 16 ml min-1  (100 mmHg)-1 ; respectively; P < 0.05). These findings indicate that skeletal muscle contractions selectively amplify endothelium-dependent vasodilatory signalling via activation of KIR channels, and this may be an important mechanism contributing to the normal vasodilatory response to exercise in humans.


Asunto(s)
Endotelio Vascular/fisiología , Músculo Esquelético/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Vasodilatación/fisiología , Acetilcolina/farmacología , Adulto , Compuestos de Bario/farmacología , Cloruros/farmacología , Endotelio Vascular/efectos de los fármacos , Ejercicio Físico/fisiología , Femenino , Antebrazo/fisiología , Fuerza de la Mano/fisiología , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/efectos de los fármacos , Nitroprusiato/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Adulto Joven
11.
J Physiol ; 596(15): 3371-3389, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29603743

RESUMEN

KEY POINTS: Increasing blood flow (hyperaemia) to exercising muscle helps match oxygen delivery and metabolic demand. During exercise in hypoxia, there is a compensatory increase in muscle hyperaemia that maintains oxygen delivery and tissue oxygen consumption. Nitric oxide (NO) and prostaglandins (PGs) contribute to around half of the augmented hyperaemia during hypoxic exercise, although the contributors to the remaining response are unknown. In the present study, inhibiting NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels did not blunt augmented hyperaemia during hypoxic exercise beyond previous observations with NO/PG block alone. Furthermore, although inhibition of only Na+ /K+ -ATPase and KIR channels abolished hyperaemia during hypoxia at rest, it had no effect on augmented hyperaemia during hypoxic exercise. This is the first study in humans to demonstrate that Na+ /K+ -ATPase and KIR channel activation is required for augmented muscle hyperaemia during hypoxia at rest but not during hypoxic exercise, thus providing new insight into vascular control. ABSTRACT: Exercise hyperaemia in hypoxia is augmented relative to the same exercise intensity in normoxia. During moderate-intensity handgrip exercise, endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to ∼50% of the augmented forearm blood flow (FBF) response to hypoxic exercise (HypEx), although the mechanism(s) underlying the remaining response are unclear. We hypothesized that combined inhibition of NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels would abolish the augmented hyperaemic response in HypEx. In healthy young adults, FBF responses were measured (Doppler ultrasound) and forearm vascular conductance was calculated during 5 min of rhythmic handgrip exercise at 20% maximum voluntary contraction under regional sympathoadrenal inhibition in normoxia and isocapnic HypEx (O2 saturation ∼80%). Compared to control, combined inhibition of NO, PGs, Na+ /K+ -ATPase and KIR channels (l-NMMA + ketorolac + ouabain + BaCl2; Protocol 1; n = 10) blunted the compensatory increase in FBF during HypEx by ∼50% (29 ± 6 mL min-1 vs. 62 ± 8 mL min-1 , respectively, P < 0.05). By contrast, ouabain + BaCl2 alone (Protocol 2; n = 10) did not affect this augmented hyperaemic response (50 ± 11 mL min-1 vs. 60 ± 13 mL min-1 , respectively, P > 0.05). However, the blocked condition in both protocols abolished the hyperaemic response to hypoxia at rest (P < 0.05). We conclude that activation of Na+ /K+ -ATPase and KIR channels is involved in the hyperaemic response to hypoxia at rest, although it does not contribute to the augmented exercise hyperaemia during hypoxia in humans.


Asunto(s)
Hiperemia/fisiopatología , Hipoxia/fisiopatología , Músculo Esquelético/fisiología , Canales de Potasio de Rectificación Interna/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Adulto , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Adulto Joven
12.
J Physiol ; 595(15): 5175-5190, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28590059

RESUMEN

KEY POINTS: Intravascular ATP attenuates sympathetic vasoconstriction (sympatholysis) similar to what is observed in contracting skeletal muscle of humans, and may be an important contributor to exercise hyperaemia. Similar to exercise, ATP-mediated vasodilatation occurs via activation of inwardly rectifying potassium channels (KIR ), and synthesis of nitric oxide (NO) and prostaglandins (PG). However, recent evidence suggests that these dilatatory pathways are not obligatory for sympatholysis during exercise; therefore, we tested the hypothesis that the ability of ATP to blunt α1 -adrenergic vasoconstriction in resting skeletal muscle would be independent of KIR , NO, PGs and Na+ /K+ -ATPase activity. Blockade of KIR channels alone or in combination with NO, PGs and Na+ /K+ -ATPase significantly reduced the vasodilatatory response to ATP, although intravascular ATP maintained the ability to attenuate α1 -adrenergic vasoconstriction. This study highlights similarities in the vascular response to ATP and exercise, and further supports a potential role of intravascular ATP in blood flow regulation during exercise in humans. ABSTRACT: Exercise and intravascular ATP elicit vasodilatation that is dependent on activation of inwardly rectifying potassium (KIR ) channels, with a modest reliance on nitric oxide (NO) and prostaglandin (PG) synthesis. Both exercise and intravascular ATP attenuate sympathetic α-adrenergic vasoconstriction (sympatholysis). However, KIR channels, NO, PGs and Na+ /K+ -ATPase activity are not obligatory to observe sympatholysis during exercise. To further determine similarities between exercise and intravascular ATP, we tested the hypothesis that inhibition of KIR channels, NO and PG synthesis, and Na+ /K+ -ATPase would not alter the ability of ATP to blunt α1 -adrenergic vasoconstriction. In healthy subjects, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to intra-arterial infusion of phenylephrine (PE; α1 -agonist) during ATP or control vasodilatator infusion, before and after KIR channel inhibition alone (barium chloride; n = 7; Protocol 1); NO (l-NMMA) and PG (ketorolac) inhibition alone, or combined NO, PGs, Na+ /K+ -ATPase (ouabain) and KIR channel inhibition (n = 6; Protocol 2). ATP attenuated PE-mediated vasoconstriction relative to adenosine (ADO) and sodium nitroprusside (SNP) (PE-mediated ΔFVC: ATP: -16 ± 2; ADO: -38 ± 6; SNP: -59 ± 6%; P < 0.05 vs. ADO and SNP). Blockade of KIR channels alone or combined with NO, PGs and Na+ /K+ -ATPase, attenuated ATP-mediated vasodilatation (∼35 and ∼60% respectively; P < 0.05 vs. control). However, ATP maintained the ability to blunt PE-mediated vasoconstriction (PE-mediated ΔFVC: KIR blockade alone: -6 ± 5%; combined blockade:-4 ± 14%; P > 0.05 vs. control). These findings demonstrate that intravascular ATP modulates α1 -adrenergic vasoconstriction via pathways independent of KIR channels, NO, PGs and Na+ /K+ -ATPase in humans, consistent with a role for endothelium-derived hyperpolarization in functional sympatholysis.


Asunto(s)
Adenosina Trifosfato/fisiología , Óxido Nítrico/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Prostaglandinas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Adulto , Arteria Braquial/fisiología , Femenino , Antebrazo/irrigación sanguínea , Antebrazo/fisiología , Humanos , Masculino , Flujo Sanguíneo Regional , Vasoconstricción/fisiología , Adulto Joven
13.
Am J Physiol Heart Circ Physiol ; 312(4): H832-H841, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159810

RESUMEN

Systemic hypoxia is a physiological and pathophysiological stress that activates the sympathoadrenal system and, in young adults, leads to peripheral vasodilation. We tested the hypothesis that peripheral vasodilation to graded systemic hypoxia is impaired in older healthy adults and that this age-associated impairment is due to attenuated ß-adrenergic mediated vasodilation and elevated α-adrenergic vasoconstriction. Forearm blood flow was measured (Doppler ultrasound), and vascular conductance (FVC) was calculated in 12 young (24 ± 1 yr) and 10 older (63 ± 2 yr) adults to determine the local dilatory responses to graded hypoxia (90, 85, and 80% O2 saturations) in control conditions, following local intra-arterial blockade of ß-receptors (propranolol), and combined blockade of α- and ß-receptors (phentolamine + propranolol). Under control conditions, older adults exhibited impaired vasodilation to hypoxia compared with young participants at all levels of hypoxia (peak ΔFVC at 80% [Formula: see text] = 4 ± 6 vs. 35 ± 8%; P < 0.01). During ß-blockade, older adults actively constricted at 85 and 80% [Formula: see text] (peak ΔFVC at 80% [Formula: see text] = -13 ± 6%; P < 0.05 vs. control), whereas the response in the young was not significantly impacted (peak ΔFVC = 28 ± 8%). Combined α- and ß-blockade increased the dilatory response to hypoxia in young adults; however, older adults failed to significantly vasodilate (peak ΔFVC at 80% [Formula: see text]= 12 ± 11% vs. 58 ± 11%; P < 0.05). Our findings indicate that peripheral vasodilation to graded systemic hypoxia is significantly impaired in older adults, which cannot be fully explained by altered sympathoadrenal control of vascular tone. Thus, the impairment in hypoxic vasodilation is likely due to attenuated local vasodilatory and/or augmented vasoconstrictor signaling with age.NEW & NOTEWORTHY We found that the lack of peripheral vasodilation during graded systemic hypoxia with aging is not mediated by the sympathoadrenal system, strongly implicating local vascular control mechanisms in this impairment. Understanding these mechanisms may lead to therapeutic advances for improving tissue blood flow and oxygen delivery in aging and disease.


Asunto(s)
Hipoxia/fisiopatología , Sistema Nervioso Simpático/fisiología , Vasodilatación/fisiología , Antagonistas Adrenérgicos alfa/farmacología , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Análisis de los Gases de la Sangre , Composición Corporal , Catecolaminas/sangre , Femenino , Antebrazo/irrigación sanguínea , Antebrazo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/fisiología , Flujo Sanguíneo Regional/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adulto Joven
14.
J Physiol ; 594(8): 2261-73, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26332887

RESUMEN

The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium-derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age-associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium-derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin-1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. 'functional sympatholysis'), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium-dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age-associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium-dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans.


Asunto(s)
Envejecimiento/fisiología , Endotelio Vascular/metabolismo , Ejercicio Físico , Microcirculación , Músculo Esquelético/irrigación sanguínea , Envejecimiento/metabolismo , Humanos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Óxido Nítrico/metabolismo , Sistema Nervioso Simpático/fisiología , Vasodilatación
15.
J Physiol ; 594(24): 7435-7453, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27561916

RESUMEN

KEY POINTS: 'Functional sympatholysis' describes the ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction, and is critical to ensure proper blood flow and oxygen delivery to metabolically active skeletal muscle. The signalling mechanism responsible for sympatholysis in healthy humans is unknown. Evidence from animal models has identified endothelium-derived hyperpolarization (EDH) as a potential mechanism capable of attenuating sympathetic vasoconstriction. In this study, increasing endothelium-dependent signalling during exercise significantly enhanced the ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction in humans. This is the first study in humans to identify endothelium-dependent regulation of sympathetic vasoconstriction in contracting skeletal muscle, and specifically supports a role for EDH-like vasodilatory signalling. Impaired functional sympatholysis is a common feature of cardiovascular ageing, hypertension and heart failure, and thus identifying fundamental mechanisms responsible for sympatholysis is clinically relevant. ABSTRACT: Stimulation of α-adrenoceptors elicits vasoconstriction in resting skeletal muscle that is blunted during exercise in an intensity-dependent manner. In humans, the underlying mechanisms remain unclear. We tested the hypothesis that stimulating endothelium-dependent vasodilatory signalling will enhance the ability of contracting skeletal muscle to blunt α1 -adrenergic vasoconstriction. Changes in forearm vascular conductance (FVC; Doppler ultrasound, brachial intra-arterial pressure via catheter) to local intra-arterial infusion of phenylephrine (PE; α1 -adrenoceptor agonist) were calculated during (1) infusion of the endothelium-dependent vasodilators acetylcholine (ACh) and adenosine triphosphate (ATP), the endothelium-independent vasodilator (sodium nitroprusside, SNP), or potassium chloride (KCl) at rest; (2) mild or moderate intensity handgrip exercise; and (3) combined mild exercise + ACh, ATP, SNP, or KCl infusions in healthy adults. Robust vasoconstriction to PE was observed during vasodilator infusion alone and mild exercise, and this was blunted during moderate intensity exercise (ΔFVC: -34 ± 4 and -34 ± 3 vs. -13 ± 2%, respectively, P < 0.05). Infusion of ACh or ATP during mild exercise significantly attenuated PE vasoconstriction similar to levels observed during moderate exercise (ACh: -3 ± 4; ATP: -18 ± 4%). In contrast, infusion of SNP or KCl during mild exercise did not attenuate PE-mediated vasoconstriction (-32 ± 5 and -46 ± 3%). To further study the role of endothelium-dependent hyperpolarization (EDH), ACh trials were repeated with combined nitric oxide synthase and cyclooxygenase inhibition. Here, PE-mediated vasoconstriction was blunted at rest (blockade: -20 ± 5 vs. CONTROL: -31 ± 3% vs.; P < 0.05) and remained blunted during exercise (blockade: -15 ± 5 vs. CONTROL: -14 ± 5%). We conclude that stimulation of EDH-like vasodilatation can blunt α1 -adrenergic vasoconstriction in contracting skeletal muscle of humans.


Asunto(s)
Endotelio Vascular/fisiología , Músculo Esquelético/fisiología , Receptores Adrenérgicos alfa/fisiología , Vasodilatación/fisiología , Acetilcolina/farmacología , Adenosina Trifosfato/farmacología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Adulto , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Nitroprusiato/farmacología , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Transducción de Señal , Vasoconstricción/fisiología , Vasoconstrictores/farmacología , Vasodilatadores/farmacología , Adulto Joven
16.
J Physiol ; 593(12): 2735-51, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25893955

RESUMEN

KEY POINTS: During exercise there is a balance between vasoactive factors that facilitate increases in blood flow and oxygen delivery to the active tissue and the sympathetic nervous system, which acts to limit muscle blood flow for the purpose of blood pressure regulation. Functional sympatholysis describes the ability of contracting skeletal muscle to blunt the stimulus for vasoconstriction, yet the underlying signalling of this response in humans is not well understood. We tested the hypothesis that activation of inwardly rectifying potassium channels and the sodium-potassium ATPase pump, two potential vasodilator pathways within blood vessels, contributes to the ability to blunt α1 -adrenergic vasoconstriction. Our results show preserved blunting of α1 -adrenergic vasconstriction despite blockade of these vasoactive factors. Understanding this complex phenomenon is important as it is impaired in a variety of clinical populations. ABSTRACT: Sympathetic vasoconstriction in contracting skeletal muscle is blunted relative to that which occurs in resting tissue; however, the mechanisms underlying this 'functional sympatholysis' remain unclear in humans. We tested the hypothesis that α1 -adrenergic vasoconstriction is augmented during exercise following inhibition of inwardly rectifying potassium (KIR ) channels and Na(+) /K(+) -ATPase (BaCl2  + ouabain). In young healthy humans, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) at rest, during steady-state stimulus conditions (pre-phenylephrine), and after 2 min of phenylephrine (PE; an α1 -adrenoceptor agonist) infusion via brachial artery catheter in response to two different stimuli: moderate (15% maximal voluntary contraction) rhythmic handgrip exercise or adenosine infusion. In Protocol 1 (n = 11 subjects) a total of six trials were performed in three conditions: control (saline), combined enzymatic inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis (l-NMMA + ketorolac) and combined inhibition of NO, PGs, KIR channels and Na(+) /K(+) -ATPase (l-NMMA + ketorolac + BaCl2  + ouabain). In Protocol 2 (n = 6) a total of four trials were performed in two conditions: control (saline), and combined KIR channel and Na(+) /K(+) -ATPase inhibition. All trials occurred after local ß-adrenoceptor blockade (propranolol). PE-mediated vasoconstriction was calculated (%ΔFVC) in each condition. Contrary to our hypothesis, despite attenuated exercise hyperaemia of ∼30%, inhibition of KIR channels and Na(+) /K(+) -ATPase, combined with inhibition of NO and PGs (Protocol 1) or alone (Protocol 2) did not enhance α1 -mediated vasoconstriction during exercise (Protocol 1: -27 ± 3%; P = 0.2 vs. control, P = 0.4 vs. l-NMMA + ketorolac; Protocol 2: -21 ± 7%; P = 0.9 vs. control). Thus, contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during combined KIR channel and Na(+) /K(+) -ATPase inhibition.


Asunto(s)
Músculo Esquelético/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Receptores Adrenérgicos alfa 1/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Adenosina/farmacología , Adulto , Compuestos de Bario/farmacología , Arteria Braquial/fisiología , Cloruros/farmacología , Ejercicio Físico/fisiología , Femenino , Antebrazo/irrigación sanguínea , Antebrazo/fisiología , Fuerza de la Mano/fisiología , Humanos , Ketorolaco/farmacología , Masculino , Contracción Muscular/fisiología , Ouabaína/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Propranolol/farmacología , Flujo Sanguíneo Regional , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Vasoconstricción/fisiología , Adulto Joven , omega-N-Metilarginina/farmacología
17.
Am J Physiol Heart Circ Physiol ; 309(2): H360-8, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25980023

RESUMEN

Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Fuerza de la Mano , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Administración Oral , Factores de Edad , Anciano , Envejecimiento , Velocidad del Flujo Sanguíneo , Femenino , Antebrazo , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular , Músculo Esquelético/metabolismo , Flujo Sanguíneo Regional , Factores de Tiempo , Ultrasonografía Doppler
18.
Circ Res ; 113(8): 1023-32, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940309

RESUMEN

RATIONALE: Reactive hyperemia (RH) in the forearm circulation is an important marker of cardiovascular health, yet the underlying vasodilator signaling pathways are controversial and thus remain unclear. OBJECTIVE: We hypothesized that RH occurs via activation of inwardly rectifying potassium (KIR) channels and Na(+)/K(+)-ATPase and is largely independent of the combined production of the endothelial autocoids nitric oxide (NO) and prostaglandins in young healthy humans. METHODS AND RESULTS: In 24 (23±1 years) subjects, we performed RH trials by measuring forearm blood flow (FBF; venous occlusion plethysmography) after 5 minutes of arterial occlusion. In protocol 1, we studied 2 groups of 8 subjects and assessed RH in the following conditions. For group 1, we studied control (saline), KIR channel inhibition (BaCl2), combined inhibition of KIR channels and Na(+)/K(+)-ATPase (BaCl2 and ouabain, respectively), and combined inhibition of KIR channels, Na(+)/K(+)-ATPase, NO, and prostaglandins (BaCl2, ouabain, L-NMMA [N(G)-monomethyl-L-arginine] and ketorolac, respectively). Group 2 received ouabain rather than BaCl2 in the second trial. In protocol 2 (n=8), the following 3 RH trials were performed: control; L-NMMA plus ketorolac; and L-NMMA plus ketorolac plus BaCl2 plus ouabain. All infusions were intra-arterial (brachial). Compared with control, BaCl2 significantly reduced peak FBF (-50±6%; P<0.05), whereas ouabain and L-NMMA plus ketorolac did not. Total FBF (area under the curve) was attenuated by BaCl2 (-61±3%) and ouabain (-44±12%) alone, and this effect was enhanced when combined (-87±4%), nearly abolishing RH. L-NMMA plus ketorolac did not impact total RH FBF before or after administration of BaCl2 plus ouabain. CONCLUSIONS: Activation of KIR channels is the primary determinant of peak RH, whereas activation of both KIR channels and Na(+)/K(+)-ATPase explains nearly all of the total (AUC) RH in humans.


Asunto(s)
Arteria Braquial/enzimología , Antebrazo/irrigación sanguínea , Hemodinámica , Hiperemia/enzimología , Canales de Potasio de Rectificación Interna/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adolescente , Adulto , Análisis de Varianza , Velocidad del Flujo Sanguíneo , Arteria Braquial/efectos de los fármacos , Arteria Braquial/fisiopatología , Estudios de Casos y Controles , Inhibidores de la Ciclooxigenasa/administración & dosificación , Endotelio Vascular/enzimología , Endotelio Vascular/fisiopatología , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Hiperemia/fisiopatología , Infusiones Intraarteriales , Masculino , Microcirculación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Pletismografía , Bloqueadores de los Canales de Potasio/administración & dosificación , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Prostaglandinas/metabolismo , Flujo Sanguíneo Regional , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Factores de Tiempo , Vasodilatación , Vasodilatadores/administración & dosificación , Adulto Joven
19.
Exerc Sport Sci Rev ; 43(1): 5-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25390296

RESUMEN

Regulation of vascular tone is a complex response that integrates multiple signals that allow for blood flow and oxygen supply to match oxygen demand appropriately. Here, we discuss the potential role of intravascular adenosine triphosphate (ATP) as a primary factor in these responses and put forth the hypothesis that deficient ATP release contributes to impairments in vascular control exhibited in aged and diseased populations.


Asunto(s)
Adenosina Trifosfato/sangre , Hemodinámica/fisiología , Consumo de Oxígeno/fisiología , Animales , Ejercicio Físico/fisiología , Humanos , Hipoxia/fisiopatología , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Estrés Mecánico , Sistema Nervioso Simpático/fisiología , Vasoconstricción , Vasodilatación
20.
J Physiol ; 592(21): 4775-88, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25194040

RESUMEN

In healthy humans, ageing is typically associated with reduced skeletal muscle blood flow and vascular conductance during exercise. Further, there is a marked increase in resting sympathetic nervous system (SNS) activity with age, yet whether augmented SNS-mediated α-adrenergic vasoconstriction contributes to the age-associated impairment in exercising muscle blood flow and vascular tone in humans is unknown. We tested the hypothesis that SNS-mediated vasoconstriction is greater in older than young adults and limits muscle (forearm) blood flow (FBF) during graded handgrip exercise (5, 15, 25% maximal voluntary contraction (MVC)). FBF was measured (Doppler ultrasound) and forearm vascular conductance (FVC) was calculated in 11 young (21 ± 1 years) and 12 older (62 ± 2 years) adults in control conditions and during combined local α- and ß-adrenoreceptor blockade via intra-arterial infusions of phentolamine and propranolol, respectively. Under control conditions, older adults exhibited significantly lower FBF and FVC at 15% MVC exercise (22.6 ± 1.3 vs. 29 ± 3.3 ml min(-1) 100 g forearm fat-free mass (FFM)(-1) and 21.7 ± 1.2 vs. 33.6 ± 4.0 ml min(-1) 100 g FFM(-1) 100 mmHg(-1); P < 0.05) and 25% MVC exercise (37.4 ± 1.4 vs. 46.0 ± 4.9 ml min(-1) 100 g FFM(-1) and 33.7 ± 1.4 vs. 49.0 ± 5.7 ml min(-1) 100 g FFM(-1) 100 mmHg(-1); P < 0.05), whereas there was no age group difference at 5% MVC exercise. Local adrenoreceptor blockade increased FBF and FVC at rest and during exercise in both groups, although the increase in FBF and FVC from rest to steady-state exercise was similar in young and older adults across exercise intensities, and thus the age-associated impairment in FBF and FVC persisted. Our data indicate that during graded intensity handgrip exercise, the reduced FVC and subsequently lower skeletal muscle blood flow in older healthy adults is not due to augmented sympathetic vasoconstriction, but rather due to impairments in local signalling or structural limitations in the peripheral vasculature with advancing age.


Asunto(s)
Antagonistas Adrenérgicos alfa/farmacología , Envejecimiento , Fuerza de la Mano/fisiología , Músculo Esquelético/irrigación sanguínea , Fentolamina/farmacología , Femenino , Antebrazo , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular , Músculo Esquelético/efectos de los fármacos , Flujo Sanguíneo Regional , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA