Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(7): e2206265, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470672

RESUMEN

Percutaneous implants may experience infection for several times during their servicing periods. They need antibacterial activity and durability to reduce recurrent infection and cytocompatibility to reconstruct biosealing. A novel photoresponse bio-heterojunction (PCT) is developed herein. It consists of TiO2 nanotubes loaded with CuS nanoparticles and wrapped with polydopamine (PDA) layer. In PCT, a built-in electric field directing from TiO2 to CuS and then to PDA is formed, and with near-infrared (NIR) irradiation, it drives photoexcited electrons to transfer in opposite direction, resulting in the separation of electron-hole pairs and formation of reactive oxygen species (ROS). Simultaneously, PCT shows photothermal effect due to nonradiative relaxation of photoexcited electrons and thermal vibration of lattices. The synergic effect of photogenerated ROS and hyperthermia increases bacterial membrane permeability and leakage of cellular components, endowing PCT with outstanding antibacterial performance. More importantly, PCT has good antibacterial durability and cytocompatibility due to the inhibited leaching of CuS by PDA layer. In reinfected models, with NIR irradiation, PCT sterilizes bacteria, reduces inflammatory response and enhances re-integration of soft tissue efficiently. This work provides an outstanding bio-heterojunction for percutaneous implants in treating reinfection by NIR irradiation and rebuilding biosealing.


Asunto(s)
Nanoestructuras , Reinfección , Humanos , Especies Reactivas de Oxígeno , Antibacterianos/farmacología
2.
Bioact Mater ; 8: 1-11, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541382

RESUMEN

Killing bacteria, eliminating biofilm and building soft tissue integration are very important for percutaneous implants which service in a complicated environment. In order to endow Ti implants with above abilities, multifunctional coatings consisted of Fe2O3-FeOOH nanograins as an outer layer and Zn doped microporous TiO2 as an inner layer were fabricated by micro-arc oxidation, hydrothermal treatment and annealing treatment. The microstructures, physicochemical properties and photothermal response of the coatings were observed; their antibacterial efficiencies and cell response in vitro as well as biofilm elimination and soft tissue integration in vivo were evaluated. The results show that with the increased annealing temperature, coating morphologies didn't change obviously, but lattices of ß-FeOOH gradually disorganized into amorphous state and rearranged to form Fe2O3. The coating annealed at 450 °C (MA450) had nanocrystallized Fe2O3 and ß-FeOOH. With a proper NIR irradiation strategy, MA450 killed adhered bacteria efficiently and increased fibroblast behaviors via up-regulating fibrogenic-related genes in vitro; in an infected model, MA450 eliminated biofilm, reduced inflammatory response and improved biointegration with soft tissue. The good performance of MA450 was due to a synergic effect of photothermal response and released ions (Zn2+ and Fe3+).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA