Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(30): 19784-19793, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28636679

RESUMEN

We study from a theoretical perspective the ionization of molecules and clusters induced by irradiation of a combined two-color laser field consisting of a train of attosecond XUV pulses in the presence of an IR field. We use time-dependent density-functional theory (TDDFT) in real time and real space as a theoretical tool. The calculated results are compared to experimental data when available. We also compare TDDFT with results obtained using a time-dependent Schrödinger equation (TDSE), which is well suited to simple systems while TDDFT allows dealing with more complex molecules and clusters. As a key observable, we study ionization versus delay time of the XUV pulses with respect to the IR background pulse. Experiments in simple atoms (He and Ar) show a regular modulation of this signal with half the IR period. This feature is recovered by TDDFT as well as by the TDSE (although total ionization differs by an order of magnitude). As more complex systems, we consider a C3 chain molecule and Na clusters. Here we encounter a different picture as the ionization signal develops a more involved pattern with several peaks per half IR period and as the TDSE produces a different pattern to TDDFT. Both effects could be related to the appearance of strong resonance modes in these more complex systems.

2.
J Chem Phys ; 142(8): 084118, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25725723

RESUMEN

Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

3.
Phys Rev Lett ; 101(9): 096404, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18851631

RESUMEN

We discuss an implementation of the self-interaction correction for the local-density approximation to time-dependent density-functional theory. A variational formulation is given, taking care of the necessary constraints. A manageable and transparent propagation scheme using two sets of wave functions is proposed and applied to laser excitation with subsequent ionization of a dimer molecule.

4.
Phys Rev Lett ; 85(19): 4012-5, 2000 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-11056612

RESUMEN

The NA50 Collaboration has recently observed that the J/psi production rate in Pb-Pb collisions decreases more rapidly as a function of the transverse energy for the most central collisions than for less central ones. We show that this phenomenon can be understood as an effect of transverse energy fluctuations in central collisions. A good fit of the data is obtained using a model which relates J/psi suppression to the local energy density. Our results suggest that the J/psi is completely suppressed at the highest densities achieved in Pb-Pb collisions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA