Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 289(26): 18008-21, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821719

RESUMEN

The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a ß-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/química , Toxinas Bacterianas/inmunología , Clostridioides difficile/inmunología , Epítopos/inmunología , Secuencia de Aminoácidos , Anticuerpos Antibacterianos/química , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Sitios de Unión , Anticuerpos ampliamente neutralizantes , Clostridioides difficile/química , Clostridioides difficile/genética , Cristalografía por Rayos X , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
2.
Antimicrob Agents Chemother ; 59(2): 1052-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25451052

RESUMEN

Clostridium difficile infections (CDIs) are the leading cause of hospital-acquired infectious diarrhea and primarily involve two exotoxins, TcdA and TcdB. Actoxumab and bezlotoxumab are human monoclonal antibodies that neutralize the cytotoxic/cytopathic effects of TcdA and TcdB, respectively. In a phase II clinical study, the actoxumab-bezlotoxumab combination reduced the rate of CDI recurrence in patients who were also treated with standard-of-care antibiotics. However, it is not known whether the antibody combination will be effective against a broad range of C. difficile strains. As a first step toward addressing this, we tested the ability of actoxumab and bezlotoxumab to neutralize the activities of toxins from a number of clinically relevant and geographically diverse strains of C. difficile. Neutralization potencies, as measured in a cell growth/survival assay with purified toxins from various C. difficile strains, correlated well with antibody/toxin binding affinities. Actoxumab and bezlotoxumab neutralized toxins from culture supernatants of all clinical isolates tested, including multiple isolates of the BI/NAP1/027 and BK/NAP7/078 strains, at antibody concentrations well below plasma levels observed in humans. We compared the bezlotoxumab epitopes in the TcdB receptor binding domain across known TcdB sequences and found that key substitutions within the bezlotoxumab epitopes correlated with the relative differences in potencies of bezlotoxumab against TcdB of some strains, including ribotypes 027 and 078. Combined with in vitro neutralization data, epitope modeling will enhance our ability to predict the coverage of new and emerging strains by actoxumab-bezlotoxumab in the clinic.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Monoclonales/farmacología , Clostridioides difficile/efectos de los fármacos , Proteínas Bacterianas/genética , Línea Celular , Clostridioides difficile/inmunología , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Epítopos/inmunología , Femenino , Humanos , Masculino
3.
J Med Chem ; 65(7): 5675-5689, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35332774

RESUMEN

Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity. Tumor shrinkage in mouse models that are intrinsically resistant to single-agent therapy was further enhanced when treating the animals with MK-1454 in combination with a fully murinized antimouse PD-1 antibody, mDX400. These data support the development of STING agonists in combination with pembrolizumab (humanized anti-PD-1 antibody) for patients with tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 therapy.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Animales , Citocinas , Humanos , Inmunoterapia/métodos , Interferones , Ratones , Neoplasias/tratamiento farmacológico
4.
J Med Chem ; 65(24): 16234-16251, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36475645

RESUMEN

With the emergence and rapid spreading of NDM-1 and existence of clinically relevant VIM-1 and IMP-1, discovery of pan inhibitors targeting metallo-beta-lactamases (MBLs) became critical in our battle against bacterial infection. Concurrent with our fragment and high-throughput screenings, we performed a knowledge-based search of known metallo-beta-lactamase inhibitors (MBLIs) to identify starting points for early engagement of medicinal chemistry. A class of compounds exemplified by 11, discovered earlier as B. fragilis metallo-beta-lactamase inhibitors, was selected for in silico virtual screening. From these efforts, compound 12 was identified with activity against NDM-1 only. Initial exploration on metal binding design followed by structure-guided optimization led to the discovery of a series of compounds represented by 23 with a pan MBL inhibition profile. In in vivo studies, compound 23 in combination with imipenem (IPM) robustly lowered the bacterial burden in a murine infection model and became the lead for the invention of MBLI clinical candidates.


Asunto(s)
Infecciones Bacterianas , Inhibidores de beta-Lactamasas , Animales , Ratones , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Inhibidores de beta-Lactamasas/química , Imipenem/farmacología , Imipenem/uso terapéutico , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
5.
Eur J Med Chem ; 224: 113686, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303079

RESUMEN

Pathway activating mutations of the transcription factor NRF2 and its negative regulator KEAP1 are strongly correlative with poor clinical outcome with pemetrexed/carbo(cis)platin/pembrolizumab (PCP) chemo-immunotherapy in lung cancer. Despite the strong genetic support and therapeutic potential for a NRF2 transcriptional inhibitor, currently there are no known direct inhibitors of the NRF2 protein or its complexes with MAF and/or DNA. Herein we describe the design of a novel and high-confidence homology model to guide a medicinal chemistry effort that resulted in the discovery of a series of peptides that demonstrate high affinity, selective binding to the Antioxidant Response Element (ARE) DNA and thereby displace NRF2-MAFG from its promoter, which is an inhibitory mechanism that to our knowledge has not been previously described. In addition to their activity in electrophoretic mobility shift (EMSA) and TR-FRET-based assays, we show significant dose-dependent ternary complex disruption of NRF2-MAFG binding to DNA by SPR, as well as cellular target engagement by thermal destabilization of HiBiT-tagged NRF2 in the NCI-H1944 NSCLC cell line upon digitonin permeabilization, and SAR studies leading to improved cellular stability. We report the characterization and unique profile of lead peptide 18, which we believe to be a useful in vitro tool to probe NRF2 biology in cancer cell lines and models, while also serving as an excellent starting point for additional in vivo optimization toward inhibition of NRF2-driven transcription to address a significant unmet medical need in non-small cell lung cancer (NSCLC).


Asunto(s)
ADN/química , Factor de Transcripción MafG/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Péptidos/química , Elementos de Respuesta Antioxidante/efectos de los fármacos , ADN/metabolismo , Diseño de Fármacos , Estabilidad de Medicamentos , Ensayo de Cambio de Movilidad Electroforética , Semivida , Células HeLa , Humanos , Factor de Transcripción MafG/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Relación Estructura-Actividad
6.
Cell Chem Biol ; 27(1): 32-40.e3, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31653597

RESUMEN

Proprotein convertase substilisin-like/kexin type 9 (PCSK9) is a serine protease involved in a protein-protein interaction with the low-density lipoprotein (LDL) receptor that has both human genetic and clinical validation. Blocking this protein-protein interaction prevents LDL receptor degradation and thereby decreases LDL cholesterol levels. Our pursuit of small-molecule direct binders for this difficult to drug PPI target utilized affinity selection/mass spectrometry, which identified one confirmed hit compound. An X-ray crystal structure revealed that this compound was binding in an unprecedented allosteric pocket located between the catalytic and C-terminal domain. Optimization of this initial hit, using two distinct strategies, led to compounds with high binding affinity to PCSK9. Direct target engagement was demonstrated in the cell lysate with a cellular thermal shift assay. Finally, ligand-induced protein degradation was shown with a proteasome recruiting tag attached to the high-affinity allosteric ligand for PCSK9.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Proproteína Convertasa 9/metabolismo , Proteolisis/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Inhibidores de Serina Proteinasa/química , Bibliotecas de Moléculas Pequeñas/química
7.
J Mol Biol ; 429(7): 1030-1044, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28232034

RESUMEN

The exotoxins toxin A (TcdA) and toxin B (TcdB) are produced by the bacterial pathogen Clostridium difficile and are responsible for the pathology associated with C. difficile infection (CDI). The antitoxin antibodies actoxumab and bezlotoxumab bind to and neutralize TcdA and TcdB, respectively. Bezlotoxumab was recently approved by the FDA for reducing the recurrence of CDI. We have previously shown that a single molecule of bezlotoxumab binds to two distinct epitopes within the TcdB combined repetitive oligopeptide (CROP) domain, preventing toxin binding to host cells. In this study, we characterize the binding of actoxumab to TcdA and examine its mechanism of toxin neutralization. Using a combination of approaches including a number of biophysical techniques, we show that there are two distinct actoxumab binding sites within the CROP domain of TcdA centered on identical amino acid sequences at residues 2162-2189 and 2410-2437. Actoxumab binding caused the aggregation of TcdA especially at higher antibody:toxin concentration ratios. Actoxumab prevented the association of TcdA with target cells demonstrating that actoxumab neutralizes toxin activity by inhibiting the first step of the intoxication cascade. This mechanism of neutralization is similar to that observed with bezlotoxumab and TcdB. Comparisons of the putative TcdA epitope sequences across several C. difficile ribotypes and homologous repeat sequences within TcdA suggest a structural basis for observed differences in actoxumab binding and/or neutralization potency. These data provide a mechanistic basis for the protective effects of the antibody in vitro and in vivo, including in various preclinical models of CDI.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Toxinas Bacterianas/antagonistas & inhibidores , Enterotoxinas/antagonistas & inhibidores , Epítopos/metabolismo , Sitios de Unión , Anticuerpos ampliamente neutralizantes , Agregado de Proteínas , Unión Proteica
9.
Chem Biol ; 22(10): 1362-73, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26456734

RESUMEN

Resistance to existing classes of antibiotics drives the need for discovery of novel compounds with unique mechanisms of action. Nargenicin A1, a natural product with limited antibacterial spectrum, was rediscovered in a whole-cell antisense assay. Macromolecular labeling in both Staphylococcus aureus and an Escherichia coli tolC efflux mutant revealed selective inhibition of DNA replication not due to gyrase or topoisomerase IV inhibition. S. aureus nargenicin-resistant mutants were selected at a frequency of ∼1 × 10(-9), and whole-genome resequencing found a single base-pair change in the dnaE gene, a homolog of the E. coli holoenzyme α subunit. A DnaE single-enzyme assay was exquisitely sensitive to inhibition by nargenicin, and other in vitro characterization studies corroborated DnaE as the target. Medicinal chemistry efforts may expand the spectrum of this novel mechanism antibiotic.


Asunto(s)
ADN Polimerasa III/genética , Descubrimiento de Drogas , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Concentración 50 Inhibidora , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacología , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Staphylococcus aureus/efectos de los fármacos
10.
Cancer Discov ; 3(7): 742-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23614898

RESUMEN

The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical efficacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identification and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF, NRAS, or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas Quinasa Quinasa PAM/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mutación , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA