Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240166

RESUMEN

Thyroid diseases affect a considerable portion of the population, with hypothyroidism being one of the most commonly reported thyroid diseases. Levothyroxine (T4) is clinically used to treat hypothyroidism and suppress thyroid stimulating hormone secretion in other thyroid diseases. In this work, an attempt to improve T4 solubility is made through the synthesis of ionic liquids (ILs) based on this drug. In this context, [Na][T4] was combined with choline [Ch]+ and 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMiM] + cations in order to prepare the desired T4-ILs. All compounds were characterized by NMR, ATR-FTIR, elemental analysis, and DSC, aiming to check their chemical structure, purities, and thermal properties. The serum, water, and PBS solubilities of the T4-ILs were compared to [Na][T4], as well as the permeability assays. It is important to note an improved adsorption capacity, in which no significant cytotoxicity was observed against L929 cells. [C2OHMiM][T4] seems to be a good alternative to the commercial levothyroxine sodium salt with promising bioavailability.


Asunto(s)
Líquidos Iónicos , Tiroxina , Tiroxina/síntesis química , Tiroxina/farmacocinética , Tiroxina/toxicidad , Disponibilidad Biológica , Solubilidad , Líquidos Iónicos/síntesis química , Líquidos Iónicos/farmacocinética , Líquidos Iónicos/toxicidad , Células L , Animales , Ratones , Permeabilidad
2.
Mol Pharm ; 18(3): 898-914, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33461296

RESUMEN

Aiming to evaluate how the release profile of naproxen (nap) is influenced by its physical state, molecular mobility, and distribution in the host, this pharmaceutical drug was loaded in three different mesoporous silicas differing in their architecture and surface composition. Unmodified and partially silylated MCM-41 matrices, respectively MCM-41 and MCM-41sil, and a biphenylene-bridged periodic mesoporous organic matrix, PMOBph, were synthetized and used as drug carriers, having comparable pore sizes (∼3 nm) and loading percentages (∼30% w/w). The loaded guest was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dielectric relaxation spectroscopy (DRS). DSC and XRD confirmed amorphization of a nap fraction incorporated inside the pores. A narrower glass transition was detected for PMOBph_nap, taken as an indication of the impact of host ordering, which also hinders the guest molecular mobility inside the pores as probed by DRS. While the PMOBph matrix is highly hydrophobic, the unmodified MCM-41 readily adsorbs water, accelerating the nap relaxation rate in the respective composite. In the dehydrated state, the faster dynamics was found for the silylated matrix since guest-host hydrogen bond interactions were inhibited to some extent by methylation. Nevertheless, in all the prepared composites, bulk-like crystalline drug deposits outside pores in a greater extent in PMOBph_nap. The DRS measurements analyzed in terms of conductivity show that, upon melting, nap easily migrates into pores in MCM-41-based composites, while it stays in the outer surface in the ordered PMOBph, determining a faster nap delivery from the latter matrix. On the other side, the mobility enhancement in the hydrated state controls the drug delivery in the unmodified MCM-41 matrix vs the silylated one. Therefore, DRS proved to be a suitable technique to disclose the influence of the ordering of the host surface and its chemical modification on the guest behavior, and, through conductivity depletion, it provides a mean to monitor the guest entrance inside the pores, easily followed even by untrained spectroscopists.


Asunto(s)
Naproxeno/química , Dióxido de Silicio/química , Adsorción/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Cristalización/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Tamaño de la Partícula , Porosidad , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química , Difracción de Rayos X/métodos
3.
Adv Funct Mater ; 27(27)2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28747856

RESUMEN

The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

4.
Mol Pharm ; 14(9): 3164-3177, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28836790

RESUMEN

The amorphization of the readily crystallizable therapeutic ingredient and food additive, menthol, was successfully achieved by inclusion of neat menthol in mesoporous silica matrixes of 3.2 and 5.9 nm size pores. Menthol amorphization was confirmed by the calorimetric detection of a glass transition. The respective glass transition temperature, Tg = -54.3 °C, is in good agreement with the one predicted by the composition dependence of the Tg values determined for menthol:flurbiprofen therapeutic deep eutectic solvents (THEDESs). Nonisothermal crystallization was never observed for neat menthol loaded into silica hosts, which can indicate that menthol rests as a full amorphous/supercooled material inside the pores of the silica matrixes. Menthol mobility was probed by dielectric relaxation spectroscopy, which allowed to identify two relaxation processes in both pore sizes: a faster one associated with mobility of neat-like menthol molecules (α-process), and a slower, dominant one due to the hindered mobility of menthol molecules adsorbed at the inner pore walls (S-process). The fraction of molecular population governing the α-process is greater in the higher (5.9 nm) pore size matrix, although in both cases the S-process is more intense than the α-process. A dielectric glass transition temperature was estimated for each α (Tg,dielc(α)) and S (Tg,dielc(S)) molecular population from the temperature dependence of the relaxation times to 100 s. While Tg,dielc(α) agrees better with the value obtained from the linearization of the Fox equation assuming ideal behavior of the menthol:flurbiprofen THEDES, Tg,dielc(S) is close to the value determined by calorimetry for the silica composites due to a dominance of the adsorbed population inside the pores. Nevertheless, the greater fraction of more mobile bulk-like molecules in the 5.9 nm pore size matrix seems to determine the faster drug release at initial times relative to the 3.2 nm composite. However, the latter inhibits crystallization inside pores since its dimensions are inferior to menthol critical size for nucleation. This points to a suitability of these composites as drug delivery systems in which the drug release profile can be controlled by tuning the host pore size.


Asunto(s)
Mentol/química , Dióxido de Silicio/química , Rastreo Diferencial de Calorimetría , Cristalización , Flurbiprofeno/química , Solventes/química , Temperatura de Transición
5.
Pharmaceutics ; 15(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376073

RESUMEN

To investigate the impact of the surface functionalization of mesoporous silica nanoparticle (MSN) carriers in the physical state, molecular mobility and the release of Fenofibrate (FNB) MSNs with ordered cylindrical pores were prepared. The surface of the MSNs was modified with either (3-aminopropyl) triethoxysilane (APTES) or trimethoxy(phenyl)silane (TMPS), and the density of the grafted functional groups was quantified via 1H-NMR. The incorporation in the ~3 nm pores of the MSNs promoted FNB amorphization, as evidenced via FTIR, DSC and dielectric analysis, showing no tendency to undergo recrystallization in opposition to the neat drug. Moreover, the onset of the glass transition was slightly shifted to lower temperatures when the drug was loaded in unmodified MSNs, and MSNs modified with APTES composite, while it increased in the case of TMPS-modified MSNs. Dielectric studies have confirmed these changes and allowed researchers to disclose the broad glass transition in multiple relaxations associated with different FNB populations. Moreover, DRS showed relaxation processes in dehydrated composites associated with surface-anchored FNB molecules whose mobility showed a correlation with the observed drug release profiles.

6.
Pharmaceutics ; 15(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242562

RESUMEN

A rational design of drug delivery systems requires in-depth knowledge not only of the drug itself, in terms of physical state and molecular mobility, but also of how it is distributed among a carrier and its interactions with the host matrix. In this context, this work reports the behavior of simvastatin (SIM) loaded in mesoporous silica MCM-41 matrix (average pore diameter ~3.5 nm) accessed by a set of experimental techniques, evidencing that it exists in an amorphous state (X-ray diffraction, ssNMR, ATR-FTIR, and DSC). The most significant fraction of SIM molecules corresponds to a high thermal resistant population, as shown by thermogravimetry, and which interacts strongly with the MCM silanol groups, as revealed by ATR-FTIR analysis. These findings are supported by Molecular Dynamics (MD) simulations predicting that SIM molecules anchor to the inner pore wall through multiple hydrogen bonds. This anchored molecular fraction lacks a calorimetric and dielectric signature corresponding to a dynamically rigid population. Furthermore, differential scanning calorimetry showed a weak glass transition that is shifted to lower temperatures compared to bulk amorphous SIM. This accelerated molecular population is coherent with an in-pore fraction of molecules distinct from bulklike SIM, as highlighted by MD simulations. MCM-41 loading proved to be a suitable strategy for a long-term stabilization (at least three years) of simvastatin in the amorphous form, whose unanchored population releases at a much higher rate compared to the crystalline drug dissolution. Oppositely, the surface-attached molecules are kept entrapped inside pores even after long-term release assays.

7.
Polymers (Basel) ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683828

RESUMEN

Polyhydroxyalkanoates (PHA) are biopolymers with potential to replace conventional oil-based plastics. However, PHA high production costs limit their scope of commercial applications. Downstream processing is currently the major cost factor for PHA production but one of the least investigated aspects of the PHA production chain. In this study, the extraction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced at pilot scale by a mixed microbial culture was performed using sodium hydroxide (NaOH) or sodium hypochlorite (NaClO) as digestion agents of non-PHA cellular mass. Optimal conditions for digestion with NaOH (0.3 M, 4.8 h) and NaClO (9.0%, 3.4 h) resulted in polymers with a PHA purity and recovery of ca. 100%, in the case of the former and ca. 99% and 90%, respectively, in the case of the latter. These methods presented higher PHA recoveries than extraction by soxhlet with chloroform, the benchmark protocol for PHA extraction. The polymers extracted by the three methods presented similar PHA purities, molecular weights and polydispersity indices. Using the optimized conditions for NaOH and NaClO digestions, this study analyzed the effect of the initial intracellular PHA content (40-70%), biomass concentration (20-100 g/L) and biomass pre-treatment (fresh vs. dried vs. lyophilized) on the performance of PHA extraction by these two methods.

8.
Carbohydr Polym ; 245: 116500, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718611

RESUMEN

We report the cryoprotective potential of FucoPol, a fucose-containing bacterial exopolysaccharide produced by Enterobacter A47. In vitro cryopreservation assays of Vero, Saos-2, HFFF2 and C2C12 cell lines exposed to a validated non-cytotoxic 2.5 mg/mL FucoPol concentration demonstrated a consistent post-thaw metabolic viability increase. Calorimetric analysis showed a non-colligative, FucoPol concentration-dependent increase of the freezing point (Tf), with minimal change in melting point (Tm). Freezing point variation was corroborated by Polarized Optical Microscopy studies, also showing a reduction of ice crystal dimensions. Its proven shear-thinning behaviour and polyanionicity favour interactivity between the polysaccharide and the water-ice interface, resulting in ice growth inhibition. These findings demonstrate FucoPol's high promise as a bio-based, biodegradable approach to be implemented into cryopreservation formulations.


Asunto(s)
Criopreservación/métodos , Crioprotectores/química , Crioprotectores/farmacología , Fucosa/química , Fucosa/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Animales , Proteínas Anticongelantes/química , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cristalización , Enterobacter/química , Congelación , Humanos , Hielo , Ratones , Polielectrolitos/química , Células Vero , Agua/química
9.
Bioresour Technol ; 281: 31-40, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30798087

RESUMEN

While screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200 µg/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.


Asunto(s)
Glicerol/metabolismo , Polihidroxialcanoatos/biosíntesis , Pseudomonas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Melanoma/patología
10.
ChemMedChem ; 14(9): 907-911, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30735308

RESUMEN

Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid-base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C16 Pyr][Ibu] and [N1,1,2,2OH1 ][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Composición de Medicamentos , Ibuprofeno/química , Líquidos Iónicos/química , Sales (Química)/química , Línea Celular Tumoral , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Neoplasias Ováricas/patología
11.
ISOEN 2019 (2019) ; 2019: 1-3, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35939279

RESUMEN

The materials described in this work result from the self-assembly of liquid crystals and ionic liquids into droplets, stabilized within a biopolymeric matrix. These systems are extremely versatile gels, in terms of composition, and offer potential for fine tuning of both structure and function, as each individual component can be varied. Here, the characterization and application of these gels as sensing thin films in gas sensor devices is presented. The unique supramolecular structure of the gels is explored for molecular recognition of volatile organic compounds (VOCs) by employing gels with distinct formulations to yield combinatorial optical and electrical responses used in the distinction and identification of VOCs.

12.
J Phys Chem B ; 112(35): 11087-99, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18686991

RESUMEN

The molecular mobility of amorphous ibuprofen has been investigated by broadband dielectric relaxation spectroscopy (DRS) covering a temperature range of more than 200 K. Four different relaxation processes, labeled as alpha, beta, gamma, and D, were detected and characterized, and a complete relaxation map was given for the first time. The gamma-process has activation energy E a = 31 kJ.mol (-1), typical for local mobility. The weak beta-relaxation, observed in the glassy state as well as in the supercooled state was identified as the genuine Johari-Goldstein process. The temperature dependence of the relaxation time of the alpha-process (dynamic glass transition) does not obey a single VFTH law. Instead two VFTH regimes are observed separated by a crossover temperature, T B = 265 K. From the low temperature VFTH regime, a T g (diel) (tau =100 s) = 226 K was estimated, and a fragility or steepness index m = 93, was calculated showing that ibuprofen is a fragile glass former. The D-process has a Debye-like relaxation function but the temperature dependence of relaxation time also follows the VFTH behavior, with a Vogel temperature and a pre-exponential factor which seem to indicate that its dynamics is governed by the alpha-process. It has similar features as the Debye-type process observed in a variety of associating liquids, related to hydrogen bonding dynamics. The strong tendency of ibuprofen to form hydrogen bonded aggregates such as dimers and trimers either cyclic or linear which seems to control in particular the molecular mobility of ibuprofen was confirmed by IR spectroscopy, electrospray ionization mass spectrometry, and MD simulations.


Asunto(s)
Ibuprofeno/química , Movimiento (Física) , Análisis Espectral/métodos , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Conductividad Eléctrica , Enlace de Hidrógeno , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja , Temperatura
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 1): 061709, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16906851

RESUMEN

The molecular dynamics during the formation of a polymer dispersed liquid crystal (PDLC) was followed by dielectric relaxation spectroscopy in the frequency range from 10(-1) to 2 x 10(6) Hz and over the temperature range from 158 to 273 K. The composite was produced by thermal polymerization induced phase separation of a mixture of triethyleneglycol dimethacrylate and the nematic liquid crystal, E7, in the proportion of 60:40 w/w. Both monomer and liquid crystal vitrify upon cooling having glass transition relaxation processes already characterized by some of us; yet E7 was previously studied in a narrower frequency range, so the present work updates its dielectric behavior. The starting mixture exhibits a rather complex dielectric spectrum due to the detection of multiple processes occurring simultaneously in the monomer and liquid crystal constituents. The PDLC formation occurs by mobility changes essentially in the liquid crystal tumbling motion, while the main relaxation of the monomer depletes upon polymerization. A low intense secondary process of E7 hardly detected in the bulk material is enhanced in both starting mixture and final composite allowing its characterization.

14.
N Biotechnol ; 33(1): 206-15, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26047553

RESUMEN

Olive oil distillate (OOD), biodiesel fatty acids-byproduct (FAB) and used cooking oil (UCO) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) with different composition using twelve bacterial strains. OOD and FAB were exploited for the first time as alternative substrates for PHA production. UCO, OOD and FAB were used by Cupriavidus necator and Pseudomonas oleovorans to synthesize the homopolymer poly-3-hydroxybutyrate, while Pseudomonas resinovorans and Pseudomonas citronellolis produced mcl-PHA polymers mainly composed of hydroxyoctanoate and hydroxydecanoate monomers. The highest polymer content in the biomass was obtained for C. necator (62 wt.%) cultivated on OOD. Relatively high mcl-PHA content (28-31 wt.%) was reached by P. resinovorans cultivated in OOD. This study shows, for the first time, that OOD is a promising substrate for PHA production since it gives high polymer yields and allows for the synthesis of different polymers (scl- or mcl-PHA) by selection of the adequate strains.


Asunto(s)
Ácidos Grasos/metabolismo , Polihidroxialcanoatos/metabolismo , Residuos , Bacterias/metabolismo , Técnicas de Cultivo Celular por Lotes , Biodegradación Ambiental , Reactores Biológicos/microbiología , Cinética , Aceites/metabolismo , Temperatura
15.
Eur J Pharm Biopharm ; 98: 57-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26586342

RESUMEN

A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Solubilidad , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Espectroscopía de Resonancia Magnética , Vehículos Farmacéuticos , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
16.
Int J Pharm ; 492(1-2): 73-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26142248

RESUMEN

Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-ϵ-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt%), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ibuprofeno/química , Mentol/química , Antiinflamatorios no Esteroideos/química , Rastreo Diferencial de Calorimetría , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Microscopía Electrónica de Rastreo , Poliésteres/química , Solubilidad , Solventes/química , Almidón/química , Tecnología Farmacéutica , Microtomografía por Rayos X
17.
Int J Biol Macromol ; 71: 68-73, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24794198

RESUMEN

A fat-containing waste produced from the margarine manufacturing process was tested as a low cost carbon source for cultivation of different polyhydroxyalkanoates (PHAs) producing bacterial strains, including Cupriavidus necator, Comamonas testosteroni and several Pseudomonas strains. The margarine waste was mainly composed of free fatty acids (76wt.%), namely mystiric, oleic, linoleic and stearic acids. In preliminary shake flask experiments, several strains were able to grow on the margarine waste, but C. necator reached the highest PHA content in the biomass (69wt.%). This strain was selected for batch bioreactor experiments, wherein it reached a cell dry weight of 11.2g/L with a polymer content of 56wt.%. The culture produced 6.4g/L of polyhydroxybutyrate, P3(HB), within 20h of cultivation, which corresponds to a volumetric productivity of 0.33gPHA/Lh. The P3(HB) polymer produced by C. necator from the margarine waste had a melting point of 173.4°C, a glass transition temperature of 7.9°C and a crystallinity of 56.6%. Although the bioprocess needs to be optimized, the margarine waste was shown to be a promising substrate for P(3HB) production by C. necator, resulting in a polymer with physical and chemical properties similar to bacterial P(3HB) synthesized from other feedstocks.


Asunto(s)
Margarina , Polihidroxialcanoatos/biosíntesis , Residuos , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cupriavidus necator/metabolismo , Fermentación
18.
J Phys Chem B ; 118(31): 9445-59, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25059510

RESUMEN

The thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs containing the dicyanamide anion were used: 1-butyl-3-methylimidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA), 1-butyl-1-methylpyrrolidinium dicyanamide (BMPyrDCA), and 1-butylpyridinium dicyanamide (BPyDCA); the bulk ILs were also investigated for comparison. A glass transition was detected by DSC for all materials, ILs and IJs, allowing them to be classified as glass formers. Additionally, an increase in the glass transition temperature upon dehydration was observed with a greater extent for IJs, attributed to a greater hindrance imposed by the gelatin matrix after water removal, rendering the IL less mobile. While crystallization is observed for some ILs with negligible water content, it was never detected for any IJ upon thermal cycling, which persist always as fully amorphous materials. From DRS measurements, conductivity and diffusion coefficients for both cations (D+) and anions (D-) were extracted. D+ values obtained by DRS reveal excellent agreement with those obtained from PFG NMR direct measurements, obeying the same VFTH equation over a large temperature range (ΔT ≈ 150 K) within which D+ varies around 10 decades. At temperatures close to room temperature, the IJs exhibit D values comparable to the most hydrated (9%) ILs. The IJ derived from EMIMDCA possesses the highest conductivity and diffusion coefficient, respectively, ∼10(-2) S·cm(-1) and ∼10(-10) m(2)·s(-1). For BMPyrDCA the relaxational behavior was analyzed through the complex permittivity and modulus formalism allowing the assignment of the detected secondary relaxation to a Johari-Goldstein process. Besides the relevant information on the more fundamental nature providing physicochemical details on ILs behavior, new doorways are opened for practical applications by using IJ as a strategy to produce novel and stable electrolytes for different electrochemical devices.


Asunto(s)
Conductividad Eléctrica , Gelatina/química , Guanidinas/química , Líquidos Iónicos/química , Iones/química , Rastreo Diferencial de Calorimetría , Espectroscopía Dieléctrica , Difusión , Espectroscopía de Resonancia Magnética , Estructura Molecular , Peso Molecular , Nitrilos/química , Pirrolidinas/química , Temperatura , Termografía , Agua/química
19.
J Phys Chem B ; 117(33): 9793-805, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23937121

RESUMEN

The paper investigates the influence of the crystalline structure in the dynamical behavior of semicrystalline Triton X-100 allowing enlightening the reason for the detection/nondetection of the α'-process. The work was preceded by the study of the full amorphous material for which dielectric relaxation spectroscopy (DRS) identified multiple relaxations: the α-process associated with the dynamical glass transition and two secondary relaxations (ß- and γ- processes). To evaluate how crystallinity affects the detected relaxation processes, different crystallizations were induced under high and low undercooling conditions. While the secondary relaxations are unaffected by crystallization, the mobility of the cooperative bulk α-process is sensitive to the distinct morphologies. The distinct semicrystalline states were structurally characterized by X-ray diffraction and polarized optical microscopy (POM). Differential scanning calorimetry (DSC) was used as a complementary tool. Depending on the extension of undercooling, large and well-defined shperulites or grainy-like structure emerge, respectively, for low and high undercooling degrees, as monitored by POM. In the two crystalline structures, X-ray diffraction patterns detected the amorphous halo meaning that both are semicrystalline. However, no differences between the amorphous regions are indentified by this technique; the distinction was done by means of dielectric measurements probing different mobilities in each of those regions. When the large spherulites evolve, the bulk-like α-process never goes to extinction and slightly shifts to low frequencies increasing the associated glass transition by 2-3 K, as confirmed by DSC; the slight change is an indication that the dimensions of the persisting amorphous regions become comparable to the length scale inherent to the cooperative motion that determines the glass transition in the full amorphous material. For the grainy-like structure, the α-process becomes extinct and an α'-process evolves as revealed by isochronal plots of dielectric measurements, with the features of a glass transition as confirmed by temperature modulated differential scanning calorimetry; both techniques indicate a 10-12 K displacement of the associated hindered glass transition toward higher temperatures relative to the amorphous glass transition. It is concluded that the detection of the α'-process in Triton X-100 is greatly determined by the high degree of constraining of the amorphous regions imposed by the grainy crystalline structure disabling the occurrence of a bulk-like α-process. Triton X-100 can be taken as a model for understanding low molecular weight materials crystallization, allowing correlating the observed dynamical behavior with the achieved crystalline morphology.

20.
J Phys Chem B ; 115(43): 12336-47, 2011 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21928821

RESUMEN

The phase transformations of the surfactant Triton X-100 were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and dielectric relaxation spectroscopy (DRS). In particular, crystallization was induced at different cooling rates comprised between 13 and 0.5 K min(-1). Vitrification was detected by both DSC and DRS techniques with a glass transition temperature of ∼212 K (measured on heating by DSC) allowing classifying Triton X-100 as a glass former. A fully amorphous material was obtained by cooling at a rate ≥10 K min(-1), while crystallization was observed for lower cooling rates. The temperature of the onset of melt-crystallization was found to be dependent on the cooling scan rate, being higher the lower was the scan rate. In subsequent heating scans, the material undergoes cold-crystallization except if cooled previously at a rate ≤1 K min(-1). None of the different thermal histories led to a 100% crystalline material because always the jump typical of the glass transformation in both heat flux (DSC) and real permittivity (DRS) is observed. It was also observed that the extent/morphology of the crystalline phase depends on the degree of undercooling, with higher spherulites developing for lower undercooling degree (24 K ≤ T(m) - T(cr) ≤ 44 K) in melt-crystallization and a grain-like morphology emerging for T(m) - T(cr) ≈ 57 K either in melt- or cold-crystallization. The isothermal cold- and melt-crystallizations were monitored near above the calorimetric glass transition temperature by POM (221 K) and real-time DRS (T(cr) = 219, 220, and 221 K) to evaluate the phase transformation from an amorphous to a semicrystalline material. By DRS, the α-relaxation associated with the dynamic glass transition was followed, with the observation that it depletes upon both type of crystallizations with no significant changes either in shape or in location. Kinetic parameters were obtained from the time evolution of the normalized permittivity according to a modified Avrami model taking in account the induction time. The reason the isothermal crystallization occurs to a great extent in the vicinity of the glass transition was rationalized as the simultaneous effect of (i) a high dynamic fragile behavior and (ii) the occurrence of catastrophic nucleation/crystal growth probably enabled by a preordering tendency of the surfactant molecules. This is compatible with the estimated low Avrami exponent (1.12 ≤ n ≤ 1.6), suggesting that relative short length scale motions govern the crystal growth in Triton X-100 coherent with the observation of a grainy crystallization by POM.


Asunto(s)
Rastreo Diferencial de Calorimetría , Espectroscopía Dieléctrica , Octoxinol/química , Cristalización , Cinética , Metacrilatos/química , Transición de Fase , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA