Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Sci ; 130(23): 4051-4062, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196475

RESUMEN

The post-mitotic midbody (MB) is a remnant of cytokinesis that can be asymmetrically inherited by one of the daughter cells following cytokinesis. Until recently, the MB was thought to be degraded immediately following cytokinesis. However, recent evidence suggests that the MB is a protein-rich organelle that accumulates in stem cell and cancer cell populations, indicating that it may have post-mitotic functions. Here, we investigate the role of FYCO1, an LC3-binding protein (herein, LC3 refers to MAP1LC3B), and its function in regulating the degradation of post-mitotic MBs. We show that FYCO1 is responsible for formation of LC3-containing membrane around the post-mitotic MB and that FYCO1 knockdown increases MB accumulation. Although MBs accumulate in the stem-cell-like population of squamous cell carcinomas, FYCO1 depletion does not affect the clonogenicity of these cells. Instead, MB accumulation leads to an increase in anchorage-independent growth and invadopodia formation in HeLa cells and squamous carcinoma cells. Collectively, our data suggest that FYCO1 regulates MB degradation, and we present the first evidence that cancer invasiveness is a feature that can be modulated by the accumulation of MBs in cancer stem cells.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , Autofagia/fisiología , Células HeLa , Humanos , Orgánulos/metabolismo
2.
Kidney Int ; 92(4): 922-933, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28545714

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common hereditary renal disease with no currently available targeted therapies. Based on the established connection between ß-catenin signaling and renal ciliopathies, and on data from our and other laboratories showing striking similarities of this disease and cancer, we evaluated the use of an orally bioavailable small molecule, KPT-9274 (a dual inhibitor of the protein kinase PAK4 and nicotinamide phosphoribosyl transferase), for treatment of ADPKD. Treatment of PKD-derived cells with this compound not only reduces PAK4 steady-state protein levels and regulates ß-catenin signaling, but also inhibits nicotinamide phosphoribosyl transferase, the rate-limiting enzyme in a key NAD salvage pathway. KPT-9274 can attenuate cellular proliferation and induce apoptosis associated with a decrease in active (phosphorylated) PAK4 and ß-catenin in several Pkd1-null murine cell lines, with a less pronounced effect on the corresponding phenotypically normal cells. Additionally, KPT-9274 shows inhibition of cystogenesis in an ex vivo model of cyclic AMP-induced cystogenesis as well as in the early stage Pkd1flox/flox:Pkhd1-Cre mouse model, the latter showing confirmation of specific anti-proliferative, apoptotic, and on-target effects. NAD biosynthetic attenuation by KPT-9274, while critical for highly proliferative cancer cells, does not appear to be important in the slower growing cystic epithelial cells during cystogenesis. KPT-9274 was not toxic in our ADPKD animal model or in other cancer models. Thus, this small molecule inhibitor could be evaluated in a clinical trial as a viable therapy of ADPKD.


Asunto(s)
Acrilamidas/farmacología , Aminopiridinas/farmacología , Citocinas/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Quinasas p21 Activadas/metabolismo , Acrilamidas/uso terapéutico , Aminopiridinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Células Epiteliales , Femenino , Humanos , Riñón/citología , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Fosforilación , Riñón Poliquístico Autosómico Dominante/patología , Receptores de Superficie Celular/genética , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPP/genética , beta Catenina/metabolismo
3.
J Cell Biol ; 217(7): 2485-2501, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29895697

RESUMEN

Centrosome number is tightly controlled to ensure proper ciliogenesis, mitotic spindle assembly, and cellular homeostasis. Centrosome amplification (the formation of excess centrosomes) has been noted in renal cells of patients and animal models of various types of cystic kidney disease. Whether this defect plays a causal role in cystogenesis remains unknown. Here, we investigate the consequences of centrosome amplification during kidney development, homeostasis, and after injury. Increasing centrosome number in vivo perturbed proliferation and differentiation of renal progenitors, resulting in defective branching morphogenesis and renal hypoplasia. Centrosome amplification disrupted mitotic spindle morphology, ciliary assembly, and signaling pathways essential for the function of renal progenitors, highlighting the mechanisms underlying the developmental defects. Importantly, centrosome amplification was sufficient to induce rapid cystogenesis shortly after birth. Finally, we discovered that centrosome amplification sensitized kidneys in adult mice, causing cystogenesis after ischemic renal injury. Our study defines a new mechanism underlying the pathogenesis of renal cystogenesis, and identifies a potentially new cellular target for therapy.


Asunto(s)
Proliferación Celular/genética , Centrosoma/metabolismo , Riñón/crecimiento & desarrollo , Mitosis/genética , Animales , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Homeostasis/genética , Humanos , Riñón/lesiones , Riñón/patología , Ratones , Morfogénesis/genética , Huso Acromático/genética
4.
Curr Opin Cell Biol ; 35: 51-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25950842

RESUMEN

At late mitosis, the mother cell divides by the formation of a cleavage furrow, leaving two daughter cells connected by a thin intercellular bridge. During ingression of the cleavage furrow, the central spindle microtubules are compacted to form the structure known as the midbody (MB). The MB is situated within the intercellular bridge, with the abscission site sometimes occurring on one side of the MB. As a result of this one-sided (asymmetric) abscission, only one daughter cell can inherit the post-mitotic MB. Interestingly, recent studies have identified post-mitotic MBs as novel signaling platforms regulating stem cell fate and proliferation. Additionally, MBs were proposed to serve a role of polarity cues during the neurite outgrowth and apical lumen formation. Thus, abscission and MB inheritance is clearly a highly regulated cellular event that can affect development and various other cellular functions. In this review we discuss the latest findings regarding post-mitotic MB functions, as well as the machinery regulating MB inheritance and accumulation.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Animales , Diferenciación Celular , Humanos , Microtúbulos/genética , Mitosis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA