Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1853(2): 285-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450972

RESUMEN

The tight interrelationship between peroxisomes and mitochondria is illustrated by their cooperation in lipid metabolism, antiviral innate immunity and shared use of proteins executing organellar fission. In addition, we previously reported that disruption of peroxisome biogenesis in hepatocytes severely impacts on mitochondrial integrity, primarily damaging the inner membrane. Here we investigated the molecular impairments of the dysfunctional mitochondria in hepatocyte selective Pex5 knockout mice. First, by using blue native electrophoresis and in-gel activity stainings we showed that the respiratory complexes were differentially affected with reduction of complexes I and III and incomplete assembly of complex V, whereas complexes II and IV were normally active. This resulted in impaired oxygen consumption in cultured Pex5(-/-) hepatocytes. Second, mitochondrial DNA was depleted causing an imbalance in the expression of mitochondrial- and nuclear-encoded subunits of the respiratory chain complexes. Third, mitochondrial membranes showed increased permeability and fluidity despite reduced content of the polyunsaturated fatty acid docosahexaenoic acid. Fourth, the affected mitochondria in peroxisome deficient hepatocytes displayed increased oxidative stress. Acute deletion of PEX5 in vivo using adeno-Cre virus phenocopied these effects, indicating that mitochondrial perturbations closely follow the loss of functional peroxisomes in time. Likely to compensate for the functional impairments, the volume of the mitochondrial compartment was increased several folds. This was not driven by PGC-1α but mediated by activation of PPARα, possibly through c-myc overexpression. In conclusion, loss of peroxisomal metabolism in hepatocytes perturbs the mitochondrial inner membrane, depletes mitochondrial DNA and causes mitochondrial biogenesis independent of PGC-1α.


Asunto(s)
ADN Mitocondrial/metabolismo , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Compartimento Celular , Proliferación Celular , Respiración de la Célula , Transporte de Electrón , Eliminación de Gen , Hepatocitos/ultraestructura , Lípidos/química , Fluidez de la Membrana , Ratones Noqueados , Mitocondrias/ultraestructura , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Subunidades de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/metabolismo
2.
Nat Genet ; 40(2): 170-80, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18176562

RESUMEN

HIF prolyl hydroxylases (PHD1-3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparalpha pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2alpha and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress.


Asunto(s)
Metabolismo Basal , Glucosa/metabolismo , Hipoxia/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/deficiencia , Animales , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Radioisótopos de Carbono/metabolismo , Embrión de Mamíferos , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Glutamatos/metabolismo , Homocigoto , Inmunohistoquímica , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Músculo Esquelético/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Procolágeno-Prolina Dioxigenasa/genética , Tomografía Computarizada por Rayos X
3.
Biochem Biophys Res Commun ; 357(3): 718-23, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17442273

RESUMEN

Beta-oxidation of carboxylates takes place both in mitochondria and peroxisomes and in each pathway parallel enzymes exist for each conversion step. In order to better define the substrate specificities of these enzymes and in particular the elusive role of peroxisomal MFP-1, hepatocyte cultures from mice with peroxisomal gene knockouts were used to assess the consequences on substrate degradation. Hepatocytes from mice with liver selective elimination of peroxisomes displayed severely impaired oxidation of 2-methylhexadecanoic acid, the bile acid intermediate trihydroxycholestanoic acid (THCA), and tetradecanedioic acid. In contrast, mitochondrial beta-oxidation rates of palmitate were doubled, despite the severely affected inner mitochondrial membrane. As expected, beta-oxidation of the branched chain compounds 2-methylhexadecanoic acid and THCA was reduced in hepatocytes from mice with inactivation of MFP-2. More surprisingly, dicarboxylic fatty acid oxidation was impaired in MFP-1 but not in MFP-2 knockout hepatocytes, indicating that MFP-1 might play more than an obsolete role in peroxisomal beta-oxidation.


Asunto(s)
Hepatocitos/metabolismo , Complejos Multienzimáticos/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Dióxido de Carbono/metabolismo , Células Cultivadas , Colestanoles/metabolismo , Ácidos Decanoicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Hepatocitos/citología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Complejos Multienzimáticos/genética , Oxidación-Reducción , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Receptores Citoplasmáticos y Nucleares/genética , Especificidad por Sustrato
4.
Hepatology ; 41(4): 868-78, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15732085

RESUMEN

Peroxisome deficiency in men causes severe pathology in several organs, particularly in the brain and liver, but it is still unknown how metabolic abnormalities trigger these defects. In the present study, a mouse model with hepatocyte-selective elimination of peroxisomes was generated by inbreeding Pex5-loxP and albumin-Cre mice to investigate the consequences of peroxisome deletion on the functioning of hepatocytes. Besides the absence of catalase-positive peroxisomes, multiple ultrastructural alterations were noticed, including hepatocyte hypertrophy and hyperplasia, smooth endoplasmic reticulum proliferation, and accumulation of lipid droplets and lysosomes. Most prominent was the abnormal structure of the inner mitochondrial membrane, which bore some similarities with changes observed in Zellweger patients. This was accompanied by severely reduced activities of complex I, III, and V and a collapse of the mitochondrial inner membrane potential. Surprisingly, these abnormalities provoked no significant disturbances of adenosine triphosphate (ATP) levels and redox state of the liver. However, a compensatory increase of glycolysis as an alternative source of ATP and mitochondrial proliferation were observed. No evidence of oxidative damage to proteins or lipids nor elevation of oxidative stress defence mechanisms were found. Altered expression of peroxisome proliferator-activated receptor alpha (PPAR-alpha) regulated genes indicated that PPAR-alpha is activated in the peroxisome-deficient cells. In conclusion, the absence of peroxisomes from mouse hepatocytes has an impact on several other subcellular compartments and metabolic pathways but is not detrimental to the function of the liver parenchyma. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).


Asunto(s)
Retículo Endoplásmico/ultraestructura , Hepatocitos/ultraestructura , Mitocondrias Hepáticas/ultraestructura , Peroxisomas/ultraestructura , Síndrome de Zellweger/patología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Glucosa/metabolismo , Hígado/metabolismo , Hígado/ultraestructura , Ratones , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Receptores Citoplasmáticos y Nucleares/deficiencia , Síndrome de Zellweger/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA