Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biochem J ; 476(2): 375-384, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30573649

RESUMEN

HIV protease is essential for processing the Gag polyprotein to produce infectious virions and is a major target in antiretroviral therapy. We have identified an unusual HIV-1 subtype C variant that contains insertions of leucine and asparagine (L38↑N↑L) in the hinge region of protease at position 38. This was isolated from a protease inhibitor naïve infant. Isothermal titration calorimetry showed that 10% less of L38↑N↑L protease was in the active conformation as compared with a reference strain. L38↑N↑L protease displayed a ±50% reduction in KM and kcat The catalytic efficiency (kcat/KM) of L38↑N↑L protease was not significantly different from that of wild type although there was a 42% reduction in specific activity for the variant. An in vitro phenotypic assay showed the L38↑N↑L protease to be susceptible to lopinavir (LPV), atazanavir (ATV) and darunavir in the context of an unrelated Gag. However, in the presence of the related Gag, L38↑N↑L showed reduced susceptibility to darunavir while remaining susceptible to LPV and ATV. Furthermore, a reduction in viral replication capacity (RC) was observed in combination with the related Gag. The reduced susceptibility to darunavir and decrease in RC may be due to PTAPP duplication in the related Gag. The present study shows the importance of considering the Gag region when looking at drug susceptibility of HIV-1 protease variants.


Asunto(s)
Darunavir/química , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Proteasa del VIH/genética , VIH-1 , Lopinavir/química , Mutagénesis Insercional , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Darunavir/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Infecciones por VIH/genética , Proteasa del VIH/metabolismo , VIH-1/enzimología , VIH-1/genética , Humanos , Lopinavir/farmacología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
2.
Proteins ; 86(11): 1189-1201, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30183110

RESUMEN

Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P. falciparum expresses, Hsp70-x (PfHsp70-x), is partially exported to the host red blood cell where it is implicated in host cell remodeling. Nearly 500 proteins of parasitic origin are exported to the parasite-infected red blood cell (RBC) along with PfHsp70-x. The role of PfHsp70-x in the infected human RBC remains largely unclear. One of the defining features of PfHsp70-x is the presence of EEVN residues at its C-terminus. In this regard, PfHsp70-x resembles canonical eukaryotic cytosol-localized Hsp70s which possess EEVD residues at their C-termini in place of the EEVN residues associated with PfHsp70-x. The EEVD residues of eukaryotic Hsp70s facilitate their interaction with co-chaperones. Characterization of the role of the EEVN residues of PfHsp70-x could provide insights into the function of this protein. In the current study, we expressed and purified recombinant PfHsp70-x (full length) and its EEVN minus form (PfHsp70-xT ). We then conducted structure- function assays towards establishing the role of the EEVN motif of PfHsp70-x. Our findings suggest that the EEVN residues of PfHsp70-x are important for its ATPase activity and chaperone function. Furthermore, the EEVN residues are crucial for the direct interaction between PfHsp70-x and human Hsp70-Hsp90 organizing protein (hHop) in vitro. Hop facilitates functional cooperation between Hsp70 and Hsp90. However, it remains to be established if PfHsp70-x and hHsp90 cooperate in vivo.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Malaria Falciparum/parasitología , Plasmodium falciparum/química , Proteínas Protozoarias/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Unión Proteica , Pliegue de Proteína , Mapas de Interacción de Proteínas , Proteínas Protozoarias/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
Biol Chem ; 399(8): 881-893, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29878882

RESUMEN

Forkhead box (FOX) proteins are a ubiquitously expressed family of transcription factors that regulate the development and differentiation of a wide range of tissues in animals. The FOXP subfamily members are the only known FOX proteins capable of forming domain-swapped forkhead domain (FHD) dimers. This is proposed to be due to an evolutionary mutation (P539A) that lies in the FHD hinge loop, a key region thought to fine-tune DNA sequence specificity in the FOX transcription factors. Considering the importance of the hinge loop in both the dimerisation mechanism of the FOXP FHD and its role in tuning DNA binding, a detailed investigation into the implications of mutations within this region could provide important insight into the evolution of the FOX family. Isothermal titration calorimetry and hydrogen exchange mass spectroscopy were used to study the thermodynamic binding signature and changes in backbone dynamics of FOXP2 FHD DNA binding. Dual luciferase reporter assays were performed to study the effect that the hinge-loop mutation has on FOXP2 transcriptional activity in vivo. We demonstrate that the change in dynamics of the hinge-loop region of FOXP2 alters the energetics and mechanism of DNA binding highlighting the critical role of hinge loop mutations in regulating DNA binding characteristics of the FOX proteins.


Asunto(s)
ADN/química , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/metabolismo , Transcripción Genética , Sitios de Unión , ADN/metabolismo , Humanos
4.
J Mol Recognit ; 31(7): e2708, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29572982

RESUMEN

The ß-subunit of the human eukaryotic elongation factor 1 complex (heEF1ß) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α- and γ-subunits (eEF1γ). To biophysically characterize heEF1ß, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL-heEF1ß), N-terminus (NT-heEF1ß), and the C-terminus (CT-heEF1ß) regions of the protein. Our results suggest that heEF1ß is predominantly alpha-helical and possesses an accessible hydrophobic cavity in the CT-heEF1ß. Both FL-heEF1ß and NT-heEF1ß form dimers of size 62 and 30 kDa, respectively, but the CT-heEF1ß is monomeric. FL-heEF1ß interacts with the N-terminus glutathione transferase-like domain of heEF1γ (NT-heEF1γ) to form a 195-kDa complex or a 230-kDa complex in the presence of oxidized glutathione. On the other hand, NT-heEF1ß forms a 170-kDa complex with NT-heEF1γ and a high molecular weight aggregate of size greater than 670 kDa. Surface plasmon resonance analysis confirmed that (by fitting the Langmuir 1:1 model) FL-heEF1ß associated with monomeric or dimeric NT-heEF1γ at a rapid rate and slowly dissociated, suggesting strong functional affinity (KD  = 9.6 nM for monomeric or 11.3 nM for dimeric NT-heEF1γ). We postulate that the N-terminus region of heEF1ß may be responsible for its dimerization and the C-terminus region of heEF1ß modulates the formation of an ordered heEF1ß-γ oligomer, a structure that may be essential in the elongation step of eukaryotic protein biosynthesis.


Asunto(s)
Glutatión/química , Factor 1 de Elongación Peptídica/química , Subunidades de Proteína/química , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutatión/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
5.
Arch Biochem Biophys ; 657: 56-64, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30227110

RESUMEN

FOXP2 is a transcriptional repressor involved in development of the human brain and is the first gene product to be linked to the evolution of human speech. FOXP2 belongs to the FOX superfamily of proteins that share a common winged helix DNA binding domain - the forkhead domain. A divalent cation (Mg2+ or Ca2+) has been identified bound to a group of highly conserved residues in a number of FOX forkhead domain crystal structures. This work aims to investigate the role of the conserved divalent cation binding site by studying both the structure and DNA-binding function of the FOXP2 forkhead domain when in the presence and absence of either cation (Mg2+or Ca2+). The presence of the cations does not significantly alter the structure of the apo-FOXP2 forkhead domain. However, when in the presence of a cognate oligonucleotide sequence, differences are observed upon addition of divalent cation. These differences occur both in the structure and in the thermodynamic DNA binding signature of the FOXP2 forkhead domain. The incorporation of molecular dynamics simulations together with the experimental data provides us with sufficient insight so as to propose a possible role for divalent cations in the regulation of DNA binding to FOX transcription factors.


Asunto(s)
Calcio/metabolismo , ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Magnesio/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/genética , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Alineación de Secuencia , Termodinámica
6.
J Biol Chem ; 289(46): 32243-32252, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25248748

RESUMEN

The seemingly simple proton abstraction reactions underpin many chemical transformations, including isomerization reactions, and are thus of immense biological significance. Despite the energetic cost, enzyme-catalyzed proton abstraction reactions show remarkable rate enhancements. The pathways leading to these accelerated rates are numerous and on occasion partly enigmatic. The isomerization of the steroid Δ(5)-androstene-3,17-dione by the glutathione transferase A3-3 in mammals was investigated to gain insight into the mechanism. Particular emphasis was placed on the nature of the transition state, the intermediate suspected of aiding this process, and the hydrogen bonds postulated to be the stabilizing forces of these transient species. The UV-visible detection of the intermediate places this species in the catalytic pathway, whereas fluorescence spectroscopy is used to obtain the binding constant of the analog intermediate, equilenin. Solvent isotope exchange reveals that proton abstraction from the substrate to form the intermediate is rate-limiting. Analysis of the data in terms of the Marcus formalism indicates that the human glutathione transferase A3-3 lowers the intrinsic kinetic barrier by 3 kcal/mol. The results lead to the conclusion that this reaction proceeds through an enforced concerted mechanism in which the barrier to product formation is kinetically insignificant.


Asunto(s)
Androstenodiona/química , Glutatión Transferasa/química , Catálisis , Dominio Catalítico , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Isótopos , Nandrolona/química , Unión Proteica , Protones , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Compuestos de Sulfhidrilo , Termodinámica , Rayos Ultravioleta
7.
Biochemistry ; 53(1): 57-67, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24328417

RESUMEN

Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/fisiología , Lisina/química , Multimerización de Proteína/fisiología , Triptófano/química , Secuencia de Aminoácidos , Canales de Cloruro/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fragmentos de Péptidos/química , Estructura Terciaria de Proteína
8.
J Biol Chem ; 288(21): 14973-84, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23572520

RESUMEN

S-Nitrosation is a post-translational modification of protein cysteine residues, which occurs in response to cellular oxidative stress. Although it is increasingly being linked to physiologically important processes, the molecular basis for protein regulation by this modification remains poorly understood. We used transient kinetic methods to determine a minimal mechanism for spontaneous S-nitrosoglutathione (GSNO)-mediated transnitrosation of human glutathione transferase (GST) P1-1, a major detoxification enzyme and key regulator of cell proliferation. Cys(47) of GSTP1-1 is S-nitrosated in two steps, with the chemical step limited by a pre-equilibrium between the open and closed conformations of helix α2 at the active site. Cys(101), in contrast, is S-nitrosated in a single step but is subject to negative cooperativity due to steric hindrance at the dimer interface. Despite the presence of a GSNO binding site at the active site of GSTP1-1, isothermal titration calorimetry as well as nitrosation experiments using S-nitrosocysteine demonstrate that GSNO binding does not precede S-nitrosation of GSTP1-1. Kinetics experiments using the cellular reductant glutathione show that Cys(101)-NO is substantially more resistant to denitrosation than Cys(47)-NO, suggesting a potential role for Cys(101) in long term nitric oxide storage or transfer. These results constitute the first report of the molecular mechanism of spontaneous protein transnitrosation, providing insight into the post-translational control of GSTP1-1 as well as the process of protein transnitrosation in general.


Asunto(s)
Gutatión-S-Transferasa pi/química , Procesamiento Proteico-Postraduccional/fisiología , S-Nitrosoglutatión/química , Dominio Catalítico , Gutatión-S-Transferasa pi/genética , Gutatión-S-Transferasa pi/metabolismo , Humanos , Cinética , Nitrosación/fisiología , Unión Proteica/fisiología , Estructura Secundaria de Proteína , S-Nitrosoglutatión/metabolismo
9.
Protein Expr Purif ; 99: 70-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24732582

RESUMEN

The eukaryotic elongation factor 1 gamma (eEF1γ) is a multi-domain protein, which consist of a glutathione transferase (GST)-like N-terminus domain. In association with α, ß and δ subunits, eEF1γ forms part of the eukaryotic elongation factor complex, which is mainly involved in protein biosynthesis. The N-terminus GST domain of eEF1γ interacts with the ß subunit. eEF1γ subunit is over-expressed in human carcinoma. The role of human eEF1γ (heEF1γ) is poorly understood. A successful purification of recombinant heEF1γ is the first step towards determining unknown properties of the protein, including putative GST-like activities and the structure of the protein. This paper describes the over-expression, purification and characterisation of recombinant full-length, and the N- and C-terminus domains of heEF1γ. All three recombinant heEF1γ constructs over-expressed in the soluble Escherichia coli cell fraction and were purified to homogeneity. Secondary structure analysis indicates that the heEF1γ constructs have high α-helical structural character. The full-length and N-terminus domain are dimeric, while the C-terminus is monomeric. Both full-length and N-terminus domain interact with 8-anilino-1-naphthalene sulfonate (ANS) with KD=70.0 (±5.7) µM and with reduced glutathione (GSH). Glutathione sulfonate displaced ANS bound to hydrophobic binding sites in the recombinant N-terminus domain. Using the standard GSH-1-chloro-2,4-dinitrobenzene conjugation assay, the N-domain showed some enzyme activity (0.03µmolmin(-1) mg(-1) protein), while the full-length heEF1γ did not catalyse the GSH-CDNB conjugation. Consequently, we hypothesize the presence of a presumed GST-like active site structure in the heEF1γ, which comprises a glutathione binding site and a hydrophobic substrate binding site.


Asunto(s)
Factor 1 de Elongación Peptídica/aislamiento & purificación , Factor 1 de Elongación Peptídica/metabolismo , Sitios de Unión , Dinitroclorobenceno/metabolismo , Escherichia coli/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Factor 1 de Elongación Peptídica/biosíntesis , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
10.
Eur Biophys J ; 43(8-9): 405-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24925575

RESUMEN

The chloride intracellular channel protein 1 (CLIC1) is unique among eukaryotic ion channels in that it can exist as either a soluble monomer or an integral membrane channel. CLIC1 contains no known membrane-targeting signal sequences and the environmental factors which promote membrane binding of the transmembrane domain (TMD) are poorly understood. Here we report a positively charged motif at the C-terminus of the TMD and show that it enhances membrane partitioning and insertion. A 30-mer TMD peptide was synthesized in which the positively charged motif was replaced by three glutamate residues. The peptide was examined in 2,2,2-trifluoroethanol (TFE), sodium dodecyl sulfate micelles and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using size-exclusion chromatography, far-UV CD, and fluorescence spectroscopy. The motif appears to enhance membrane interaction via electrostatic contacts and functions as an electrostatic plug to anchor the TMD in membranes. In addition, the motif is also involved in orientating the TMD with respect to the cis and trans faces of the membrane. These findings shed light on the intrinsic and environmental factors that promote the spontaneous conversion of CLIC1 from a water-soluble to a membrane-bound protein.


Asunto(s)
Membrana Celular/metabolismo , Canales de Cloruro/química , Secuencia Conservada , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Adsorción , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Transporte Biológico , Membrana Celular/química , Cloruros/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Solventes/química
11.
Biochemistry ; 52(51): 9394-402, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24266513

RESUMEN

Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.


Asunto(s)
Regulación hacia Abajo , Gutatión-S-Transferasa pi/metabolismo , Modelos Moleculares , Nitratos/metabolismo , Procesamiento Proteico-Postraduccional , Dominio Catalítico/efectos de los fármacos , Dicroismo Circular , Cisteína/química , Cisteína/metabolismo , Medición de Intercambio de Deuterio , Regulación hacia Abajo/efectos de los fármacos , Gutatión-S-Transferasa pi/antagonistas & inhibidores , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/genética , Humanos , Indicadores y Reactivos/farmacología , Cinética , Nitrosación/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Replegamiento Proteico/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Desplegamiento Proteico/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Nitrosoglutatión/farmacología , Espectrometría de Fluorescencia
12.
Biochemistry ; 52(16): 2739-49, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23547926

RESUMEN

Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The transmembrane domain (TMD), implicated in membrane penetration and pore formation, comprises helix α1 and strand ß2 of the N-domain of soluble CLIC1. The mechanism by which the TMD binds, inserts, and oligomerizes in membranes to form a functional chloride channel is unknown. Here we report the secondary, tertiary, and quaternary structural changes of the CLIC1 TMD as it partitions between an aqueous and membrane-mimicking environment. A synthetic 30-mer peptide comprising the TMD was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate (SDS) micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes using far-ultraviolet circular dichroism and fluorescence spectroscopy. Data obtained in the presence of SDS micelles and POPC liposomes show that Trp35 and Cys24 have reduced solvent accessibility, indicating that the peptide adopts an inserted orientation. The peptide assumes a helical structure in the presence of these mimetics, consistent with its predicted membrane conformation. This acquisition of secondary structure is concentration-dependent, suggesting an oligomerization event. Stable dimeric and trimeric species were subsequently identified using SDS-polyacrylamide gel electrophoresis. We propose that, in the vicinity of membranes, the mixed α/ß TMD in CLIC1 rearranges to form a helix that then likely dimerizes via noncovalent helix-helix interactions to form a membrane-competent protopore complex. Such oligomerization would be essential for forming a functional ion channel, given that each CLIC1 monomer possesses only a single TMD. This work highlights the central role of the TMD in CLIC1 function: It is capable of promoting membrane insertion and dimerization in the absence of the C-domain and large portions of the N-domain.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Liposomas/química , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilcolinas/química , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Trifluoroetanol/química
13.
Biochem Biophys Res Commun ; 432(4): 683-8, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23416355

RESUMEN

JNK1 is activated by phosphorylation of the canonical T183 and Y185 residues, modifications that are catalysed typically by the upstream eukaryotic kinases MKK4 and MKK7. Nonetheless, the exact sites at which the most abundant JNK variant, JNK1ß1, is further modified by MKK4 for phospho-regulation has not been previously investigated. Aiming to characterise the nature of JNK1ß1 phosphorylation by active MKK4 using mass spectrometry, a recognised yet uncharacterised phospho-site (S377) as well as two novel phospho-residues (T228 and S284) were identified. Interestingly, the identical sites were phosphorylated during overexpression of JNK1ß1 in Escherichia coli, raising important questions that have significant implications for heterologous protein expression.


Asunto(s)
MAP Quinasa Quinasa 4/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Procesamiento Proteico-Postraduccional , Escherichia coli/metabolismo , Humanos , Espectrometría de Masas , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/genética , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Protein Expr Purif ; 87(2): 87-99, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23147205

RESUMEN

The c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively. While improvements in the purification of large quantities of active JNKs have recently been made, inadequacies in their yield, purity, and the efficiency of their phosphorylation still exist. We describe a novel and robust method that further improves upon the purification of large yields of highly pure, phosphorylated JNK1ß1, which is most suitable for biochemical and biophysical characterization. Codon harmonization of the JNK1ß1 gene was used as a precautionary measure toward increasing the soluble overexpression of the kinase. While JNK1ß1 and its substrate ATF2 were both purified to >99% purity as GST fusion proteins using GSH-agarose affinity chromatography and each cleaved from GST using thrombin, constitutively-active MEKK-C and inactive MKK4 were separately expressed in E. coli as thioredoxin-His(6)-tagged proteins and purified using urea refolding and Ni(2+)-IMAC, respectively. Activation of JNK1ß1 was then achieved by successfully reconstituting the JNK MAPK activation cascade in vitro; MEKK-C was used to activate MKK4, which in turn was used to efficiently phosphorylate and activate large quantities of JNK1ß1. Activated JNK1ß1 was thereafter able to phosphorylate ATF2 with high catalytic efficiency.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/aislamiento & purificación , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Activador 2/química , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Cromatografía de Afinidad , Codón , Escherichia coli/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , MAP Quinasa Quinasa Quinasa 4/química , MAP Quinasa Quinasa Quinasa 4/genética , Modelos Moleculares , Fosforilación
15.
Biochemistry ; 51(5): 995-1004, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22242893

RESUMEN

Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.


Asunto(s)
Canales de Cloruro/química , Histidina/química , Protones , Secuencia de Aminoácidos , Canales de Cloruro/genética , Canales de Cloruro/fisiología , Dicroismo Circular , Cristalografía por Rayos X , Histidina/genética , Histidina/fisiología , Humanos , Concentración de Iones de Hidrógeno , Líquido Intracelular/química , Líquido Intracelular/fisiología , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína/genética
16.
Biochemistry ; 51(40): 7854-62, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22966869

RESUMEN

The ion channel protein CLIC1 exists in both a soluble conformation in the cytoplasm and a membrane-bound conformation. The conformational stability of soluble CLIC1 demonstrates pH sensitivity which may be attributable to very specific residues that function as pH sensors. These sensors could be histidine or glutamate residues with pK(a) values that fall within the physiological pH range. The role of Glu81, a member of a topologically conserved buried salt bridge in CLIC1, as a pH sensor was investigated here. The mutants E81M, R29M, and E81M/R29M were designed to break the salt bridge between Glu81 and Arg29 and examine the effect of each member on the stability of the protein. Spectroscopic studies and the solved crystal structures indicated that the global structure of CLIC1 was not affected by the mutations. Urea-induced equilibrium unfolding unexpectedly showed E81M to stabilize CLIC1 at pH 7. This was due to stabilizing hydrophobic interactions with Met81 and a water-mediated compensatory H-bond between Met81 and Arg29. R29M and E81M/R29M destabilized CLIC1 at pH 7, and the unfolding transition changed from two-state to three-state, mimicking the wild type at pH 5.5. This observation points out the significance of the salt bridge in stabilizing the native state. The total unfolding free energy change of E81M CLIC1 does not change with pH, implying that Glu81 forms one of a network of pH-sensor residues in CLIC1 responsible for destabilization of the native state. This allows detachment of the N-domain from the C-domain at low pH.


Asunto(s)
Arginina/química , Canales de Cloruro/química , Ácido Glutámico/química , Secuencia de Aminoácidos , Cristalización , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Espectrometría de Fluorescencia , Difracción de Rayos X
17.
Biochemistry ; 50(32): 7067-75, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21736346

RESUMEN

The canonical glutathione transferase (GST) fold found in many monomeric and dimeric proteins consists of two domains that differ in structure and conformational dynamics. However, no evidence exists that the two domains unfold/fold independently at equilibrium, indicating the significance of interdomain interactions in governing cooperativity between domains. Bioinformatics analyses indicate the interdomain interface of the GST fold is large, predominantly hydrophobic with a high packing density explaining cooperative interdomain behavior. Structural alignments reveal a topologically conserved lock-and-key interaction across the domain interface in which a bulky hydrophobic residue ("key") protrudes from the surface of the N-domain and inserts into a pocket ("lock") in the C-domain. To better understand the molecular basis for the contribution of interdomain interactions toward cooperativity within the GST fold in the absence of any influence from quaternary interactions, studies were done with two monomeric GST proteins: Escherichia coli Grx2 (EcGrx2) and human CLIC1 (hCLIC1). Replacing the methionine "key" residue with alanine is structurally nondisruptive, whereas it significantly diminishes the folding cooperativity of both proteins. The loss in cooperativity between domains in the mutants is reflected by a change in the equilibrium folding mechanism from a wild-type two-state process to a three-state process, populating a stable folding intermediate.


Asunto(s)
Secuencia Conservada , Glutatión Transferasa/química , Pliegue de Proteína , Secuencia de Bases , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , Cartilla de ADN , Glutatión Transferasa/genética , Glutatión Transferasa/aislamiento & purificación , Mutagénesis Sitio-Dirigida , Conformación Proteica , Espectrofotometría Ultravioleta
18.
Biochim Biophys Acta ; 1804(12): 2228-33, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20833278

RESUMEN

Cytosolic glutathione transferases (GSTs) are major detoxification enzymes in aerobes. Each subunit has two distinct domains and an active site consisting of a G-site for binding GSH and an H-site for an electrophilic substrate. While the active site is located at the domain interface, the role of the stability of this interface in the catalytic function of GSTs is poorly understood. Domain 1 of class alpha GSTs has a conserved tryptophan (Trp21) in helix 1 that forms a major interdomain contact with helices 6 and 8 in domain 2. Replacing Trp21 with an alanine is structurally non-disruptive but creates a cavity between helices 1, 6 and 8 thus reducing the packing density and van der Waals contacts at the domain interface. This results in destabilization of the protein and a marked reduction in catalytic activity. While functionality at the G-site is not adversely affected by the W21A mutation, the H-site becomes more accessible to solvent and less favorable for the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB). Not only does the mutation result in a reduction in the energy for stabilizing the transition state formed in the S(N)Ar reaction between the substrates GSH and CDNB, it also compromises the ability of the enzyme to form and stabilize a transition state analogue (Meisenheimer complex) formed between GSH and 1,3,5-trinitrobenzene (TNB). The study demonstrates that the stability of the domain-domain interface plays a role in mediating the catalytic functionality of the active site, particularly the H-site, of class alpha GSTs.


Asunto(s)
Dominio Catalítico , Glutatión Transferasa/química , Isoenzimas/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Dicroismo Circular , Cristalografía por Rayos X , Dinitroclorobenceno/química , Dinitroclorobenceno/metabolismo , Estabilidad de Enzimas , Glutatión/química , Glutatión/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Desnaturalización Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Especificidad por Sustrato , Temperatura , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
19.
Biochemistry ; 49(24): 5074-81, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20481548

RESUMEN

Cytosolic class pi glutathione transferase P1-1 (GSTP1-1) is associated with drug resistance and proliferative pathways because of its catalytic detoxification properties and ability to bind and regulate protein kinases. The native wild-type protein is homodimeric, and whereas the dimeric structure is required for catalytic functionality, a monomeric and not dimeric form of class pi GST is reported to mediate its interaction with and inhibit the activity of the pro-apoptotic enzyme c-Jun N-terminal kinase (JNK) [Adler, V., et al. (1999) EMBO J. 18, 1321-1334]. Thus, the existence of a stable monomeric form of wild-type class pi GST appears to have physiological relevance. However, there are conflicting accounts of the subunit's intrinsic stability since it has been reported to be either unstable [Dirr, H., and Reinemer, P. (1991) Biochem. Biophys. Res. Commun. 180, 294-300] or stable [Aceto, A., et al. (1992) Biochem. J. 285, 241-245]. In this study, the conformational stability of GSTP1-1 was re-examined by equilibrium folding and unfolding kinetics experiments. The data do not demonstrate the existence of a stable monomer but that unfolding of hGSTP1-1 proceeds via an inactive, nativelike dimeric intermediate in which the highly dynamic helix 2 is unfolded. Furthermore, molecular modeling results indicate that a dimeric GSTP1-1 can bind JNK. According to the available evidence with regard to the stability of the monomeric and dimeric forms of GSTP1-1 and the modality of the GST-JNK interaction, formation of a complex between GSTP1-1 and JNK most likely involves the dimeric form of the GST and not its monomer as is commonly reported.


Asunto(s)
Gutatión-S-Transferasa pi/química , Estabilidad de Enzimas , Proteínas Quinasas JNK Activadas por Mitógenos/química , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Termodinámica
20.
Artículo en Inglés | MEDLINE | ID: mdl-20606271

RESUMEN

The common fold shared by members of the glutathione-transferase (GST) family has a topologically conserved isoleucine residue at the N-terminus of helix 3 which is involved in the packing of helix 3 against two beta-strands in domain 1. The role of the isoleucine residue in the structure, function and stability of GST was investigated by replacing the Ile71 residue in human GSTA1-1 by alanine or valine. The X-ray structures of the I71A and I71V mutants resolved at 1.75 and 2.51 A, respectively, revealed that the mutations do not alter the overall structure of the protein compared with the wild type. Urea-induced equilibrium unfolding studies using circular dichroism and tryptophan fluorescence suggest that the mutation of Ile71 to alanine or valine reduces the stability of the protein. A functional assay with 1-chloro-2,4-dinitrobenzene shows that the mutation does not significantly alter the function of the protein relative to the wild type. Overall, the results suggest that conservation of the topologically conserved Ile71 maintains the structural stability of the protein but does not play a significant role in catalysis and substrate binding.


Asunto(s)
Glutatión Transferasa/química , Cristalografía por Rayos X , Estabilidad de Enzimas , Glutatión Transferasa/metabolismo , Humanos , Isoleucina/química , Modelos Moleculares , Estructura Terciaria de Proteína , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA