Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Med Vet Entomol ; 34(3): 369-373, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32249973

RESUMEN

The Asian longhorned tick (Haemaphysalis longicornis) was reported for the first time in the U.S.A. in 2017 and has now spread across 12 states. The potential of this invasive tick vector to transmit pathogens will be determined through its association to hosts, such as the white-footed mouse (Peromyscus leucopus), which is the primary reservoir for the causative agent of Lyme disease (Borrelia burgdorferi) and other zoonotic pathogens. Larval H. longicornis were placed on P. leucopus; 65% of the larvae (n = 40) moved off the host within a short period of time, and none engorged. By contrast, larval blacklegged ticks (Ixodes scapularis) did not move from where they were placed in the ear of the mouse. A laboratory behavioural assay was then conducted to assess the interaction of H. longicornis with the hair of potential mammalian host species in the U.S.A. H. longicornis larvae were significantly less likely to enter the hair zone of P. leucopus and humans compared to the hair of domestic cats, domestic dogs and white-tailed deer. This study identifies a tick-host interaction behaviour, which can be quantified in a laboratory assay to predict tick-host associations and provides insights into how ticks select a host.


Asunto(s)
Conducta de Búsqueda de Hospedador , Especies Introducidas , Ixodidae/fisiología , Peromyscus/parasitología , Animales , Gatos/parasitología , Ciervos/parasitología , Reservorios de Enfermedades/microbiología , Perros/parasitología , Femenino , Ixodidae/crecimiento & desarrollo , Larva/fisiología
2.
J Theor Biol ; 335: 213-21, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23850477

RESUMEN

The basic reproduction number of a pathogen, R0, determines whether a pathogen will spread (R0>1), when introduced into a fully susceptible population or fade out (R0<1), because infected hosts do not, on average, replace themselves. In this paper we develop a simple mechanistic model for the basic reproduction number for a group of tick-borne pathogens that wholly, or almost wholly, depend on horizontal transmission to and from vertebrate hosts. This group includes the causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of human babesiosis, Babesia microti, for which transmission between co-feeding ticks and vertical transmission from adult female ticks are both negligible. The model has only 19 parameters, all of which have a clear biological interpretation and can be estimated from laboratory or field data. The model takes into account the transmission efficiency from the vertebrate host as a function of the days since infection, in part because of the potential for this dynamic to interact with tick phenology, which is also included in the model. This sets the model apart from previous, similar models for R0 for tick-borne pathogens. We then define parameter ranges for the 19 parameters using estimates from the literature, as well as laboratory and field data, and perform a global sensitivity analysis of the model. This enables us to rank the importance of the parameters in terms of their contribution to the observed variation in R0. We conclude that the transmission efficiency from the vertebrate host to Ixodes scapularis ticks, the survival rate of Ixodes scapularis from fed larva to feeding nymph, and the fraction of nymphs finding a competent host, are the most influential factors for R0. This contrasts with other vector borne pathogens where it is usually the abundance of the vector or host, or the vector-to-host ratio, that determine conditions for emergence. These results are a step towards a better understanding of the geographical expansion of currently emerging horizontally transmitted tick-borne pathogens such as Babesia microti, as well as providing a firmer scientific basis for targeted use of acaricide or the application of wildlife vaccines that are currently in development.


Asunto(s)
Babesia microti/fisiología , Babesiosis/transmisión , Borrelia burgdorferi/fisiología , Ixodes , Enfermedad de Lyme/transmisión , Modelos Biológicos , Animales , Femenino , Humanos , Ixodes/microbiología , Ixodes/parasitología , Ixodes/fisiología , Larva/microbiología , Larva/parasitología , Larva/fisiología , Masculino
5.
Virus Evol ; 7(1): veab007, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33754082

RESUMEN

Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and SARS-CoV-2 are not phylogenetically closely related; however, both use the angiotensin-converting enzyme 2 (ACE2) receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda that are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario, and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2 and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.

6.
bioRxiv ; 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-32676605

RESUMEN

SARS-CoV-1 and SARS-CoV-2 are not phylogenetically closely related; however, both use the ACE2 receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda which are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario; and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2, and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.

7.
Sci Rep ; 10(1): 12640, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724218

RESUMEN

Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and ecological changes. In the United States of America, the vast majority of Aedes-borne infections are imported from endemic regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health sector. We present a next-generation monitoring and forecasting system for [Formula: see text]-borne diseases' environmental suitability (AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological models, climate models and temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic and probabilistic forecasts can inform key prevention and control strategies .


Asunto(s)
Aedes/virología , Monitoreo Epidemiológico , Mosquitos Vectores/virología , Enfermedades Transmitidas por Vectores/patología , Animales , Betacoronavirus/aislamiento & purificación , COVID-19 , Clima , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Bases de Datos Factuales , Toma de Decisiones , Monitoreo Epidemiológico/veterinaria , Humanos , Pandemias , Neumonía Viral/patología , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2 , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/virología
8.
Epidemics ; 19: 33-42, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28089780

RESUMEN

Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding - such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.


Asunto(s)
Borrelia burgdorferi , Interacciones Huésped-Parásitos , Enfermedad de Lyme/transmisión , Animales , Ratones , Medio Oeste de Estados Unidos
9.
J Med Entomol ; 43(2): 166-76, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16619595

RESUMEN

The risk of Lyme disease for humans in the eastern United States is dependent on the density of host-seeking Ixodes scapularis Say nymphal stage ticks infected with Borrelia burgdorferi. Although many local and regional studies have estimated Lyme disease risk using these parameters, this is the first large-scale study using a standardized methodology. Density of host-seeking I. scapularis nymphs was measured by drag sampling of closed canopy deciduous forest habitats in 95 locations spaced among 2 degrees quadrants covering the entire United States east of the 100th meridian. Sampling was done in five standardized transects at each site and repeated three to six times during the summer of 2004. The total number of adults and nymphs of the seven tick species collected was 17,972, with 1,405 nymphal I. scapularis collected in 31 of the 95 sites. Peak global spatial autocorrelation values were found at the smallest lag distance (300 km) and decreased significantly after 1,000 km. Local auto-correlation statistics identified two significant high-density clusters around endemic areas in the northeast and upper Midwest and a low-density cluster in sites south of the 39th parallel, where only 21 nymphs were collected. Peak nymphal host-seeking density occurred earlier in the southern than in the most northern sites. Spatiotemporal density patterns will be combined with Borrelia prevalence data as part of a 4-yr survey to generate a nationwide spatial risk model for I. scapularis-borne Borrelia, which will improve targeting of disease prevention efforts.


Asunto(s)
Vectores Arácnidos/fisiología , Ixodes/fisiología , Animales , Análisis por Conglomerados , Geografía , Ninfa/fisiología , Densidad de Población , Estadística como Asunto , Factores de Tiempo , Estados Unidos
10.
Infect Genet Evol ; 27: 566-75, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24787999

RESUMEN

The effect of biodiversity declines on human health is currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The 'dilution effect' hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits ('multiple niche polymorphism' hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in both communities and that high ospC genotype diversity can be maintained in both species-poor and species-rich communities.


Asunto(s)
Biodiversidad , Enfermedad de Lyme/epidemiología , Riesgo , Vertebrados , Animales , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Borrelia burgdorferi/genética , Frecuencia de los Genes , Genotipo , Humanos , Larva , Enfermedad de Lyme/transmisión , Ninfa , Prevalencia , Garrapatas/microbiología
11.
Int J Remote Sens ; 27(3): 535-548, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17710188

RESUMEN

We explored the use of the European Remote Sensing Satellite 2 Synthetic Aperture Radar (ERS-2 SAR) to trace the development of rice plants in an irrigated area near Niono, Mali and relate that to the density of anopheline mosquitoes, especially An. gambiae. This is important because such mosquitoes are the major vectors of malaria in sub-Saharan Africa, and their development is often coupled to the cycle of rice development. We collected larval samples, mapped rice fields using GPS and recorded rice growth stages simultaneously with eight ERS-2 SAR acquisitions. We were able to discriminate among rice growth stages using ERS-2 SAR backscatter data, especially among the early stages of rice growth, which produce the largest numbers of larvae. We could also distinguish between basins that produced high and low numbers of anophelines within the stage of peak production. After the peak, larval numbers dropped as rice plants grew taller and thicker, reducing the amount of light reaching the water surface. ERS-2 SAR backscatter increased concomitantly. Our data support the belief that ERS-2 SAR data may be helpful for mapping the spatial patterns of rice growth, distinguishing different agricultural practices, and monitoring the abundance of vectors in nearby villages.

12.
Int J Remote Sens ; 25(2): 359-376, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18084628

RESUMEN

The aim of this study was to determine whether remotely sensed data could be used to identify rice-related malaria vector breeding habitats in an irrigated rice growing area near Niono, Mali. Early stages of rice growth show peak larval production, but Landsat sensor data are often obstructed by clouds during the early part of the cropping cycle (rainy season). In this study, we examined whether a classification based on two Landsat Enhanced Thematic Mapper (ETM)+ scenes acquired in the middle of the season and at harvesting times could be used to map different land uses and rice planted at different times (cohorts), and to infer which rice growth stages were present earlier in the season. We performed a maximum likelihood supervised classification and evaluated the robustness of the classifications with the transformed divergence separability index, the kappa coefficient and confusion matrices. Rice was distinguished from other land uses with 98% accuracy and rice cohorts were discriminated with 84% accuracy (three classes) or 94% (two classes). Our study showed that optical remote sensing can reliably identify potential malaria mosquito breeding habitats from space. In the future, these 'crop landscape maps' could be used to investigate the relationship between cultivation practices and malaria transmission.

13.
J Hered ; 93(4): 249-53, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12407210

RESUMEN

Anopheles gambiae sensu stricto is a principal vector of malaria through much of sub-Saharan Africa, where this disease is a major cause of morbidity and mortality in human populations. Accordingly, population sizes and gene flow in this species have received special attention, as these parameters are important in attempts to control malaria by impacting its mosquito vector. Past measures of genetic differentiation have sometimes yielded conflicting results, in some cases suggesting that gene flow is extensive over vast distances (6000 km) and is disrupted only by major geological disturbances and/or barriers. Using microsatellite DNA loci from populations in Mali, West Africa, we measured genetic differentiation over uniform habitats favorable to the species across distances ranging from 62 to 536 km. Gene flow was strongly correlated with distance (r(2) = 0.77), with no major differences among chromosomes. We conclude that in this part of Africa, at least, genetic differentiation for microsatellite DNA loci is consistent with traditional models of isolation by distance.


Asunto(s)
Anopheles/genética , Repeticiones de Microsatélite , Animales , Anopheles/clasificación , Frecuencia de los Genes , Genética de Población , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA