Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 136: 106525, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054527

RESUMEN

A novel fluorogenic sensor N-benzo[b]thiophen-2-yl-methylene-4,5-dimethyl-benzene-1,2-diamine (BTMPD) was synthesized and characterized by using spectroscopic methods including UV-visible, FT-IR, 1H NMR, 13C NMR, and mass spectrometry. The designed fluorescent probe, owing to its remarkable properties, behaves as an efficient turn-on sensor for the sensing of amino acid Serine (Ser). Also, the strength of the probe enhances upon the addition of Ser via charge transfer, and the renowned properties of the fluorophore were duly found. The sensor BTMPD shows incredible execution potential with respect to key performance indicators such as high selectivity, sensitivity, and low detection limit. The concentration change was linear ranging from 5 × 10-8 M to 3 × 10-7 M, which is an indication of the low detection limit of 1.74 ± 0.02 nM under optimal reaction conditions. Interestingly, the Ser addition leads to an increased intensity of the probe at λ = 393 nm which other co-existing species did not. The information about the arrangement and the features of the system and the HOMO-LUMO energy levels was found out theoretically using DFT calculations which is fairly in good agreement with the experimental cyclic voltammetry results. The fluorescence sensing using the synthesized compound BTMPD reveals the practical applicability and its application in real sample analysis.


Asunto(s)
Bases de Schiff , Serina , Espectroscopía Infrarroja por Transformada de Fourier , Bases de Schiff/química , Colorantes Fluorescentes/química
2.
J Mol Struct ; 1251: 131932, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36536784

RESUMEN

The title compound 4-(5-nitro-thiophen-2-yl)-pyrrolo[1,2-a] quinoxaline (5NO2TAAPP) was obtained by a straightforward catalyst-free reaction of 5-nitro-2- thiophene carboxaldehyde and 1-(2-aminophenyl) pyrrole in methanol and was structurally characterized by FT IR, UV-Vis, NMR spectroscopic techniques and elemental analysis. The structure of the compound has been confirmed by the single-crystal X-ray diffraction technique. The compound crystallizes in a monoclinic crystal system with space group P21/c. Unit cell dimensions: a = 12.2009(17) A0, b = 8.3544(9) A0, c = 13.9179(17) A0 and ß = 104.980(5) A0. Hirshfeld surface analysis was carried out to understand the different intermolecular interactions. The two-dimensional fingerprint plot revealed the most prominent interactions in the compound. Theoretical calculations were executed using Density functional theory (DFT) by Gaussian09 software to develop optimized geometry and frontier molecular orbital analysis. Molecular docking studies revealed that the title compound is a potent inhibitor of Main protease 3CLpro with PDB ID: 6LU7, the viral protease which is responsible for the new Corona Virus Disease (COVID-19).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA