Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 150(3): 563-74, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863009

RESUMEN

Myc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.


Asunto(s)
Genes Supresores de Tumor , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tristetraprolina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Linfocitos B/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estabilidad del ARN , ARN Mensajero/química
2.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G571-G585, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194131

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Humanos , Ratones , Animales , Vesículas Extracelulares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Mensajero/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología
4.
Breast Cancer Res Treat ; 176(2): 387-394, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31041685

RESUMEN

PURPOSE: Circulating adipose stromal cells (CASC) are thought to be increased in obesity and facilitate angiogenesis, and tumor metastases. METHODS: CASC were identified from buffy coat peripheral blood mononuclear cells (PBMCs) by flow cytometry as CD34brightCD31- CD45- and CASC frequency was compared to adiposity measures in 33 women at increased risk for breast cancer. Feasibility of CASC as a response biomarker for a diet and exercise intervention in ten breast cancer survivors was then explored. RESULTS: For 33 high-risk women, median CASC frequency was 9.7 per million PBMCs and trended positively with body mass index, fat mass index (FMI), and percent android fat. Correlation was significant when BMI was dichotomized at > versus < 35 kg/m2 (p = 0.02). For ten breast cancer survivors with a median BMI of 37 kg/m2, median CASC frequency was 16.4 per million PBMCs. In univariate analyses, change in BMI, total fat and visceral fat were significantly correlated with change in CASC frequency. On multivariate analysis, change in visceral adipose had the strongest association with change in CASC frequency (p < 0.00078). CONCLUSIONS: The association between the reduction in visceral adipose tissue and the decrease in frequency of circulating adipose stromal cells suggests that the latter might be a useful biomarker in clinical trials of obese breast cancer survivors undergoing a weight loss intervention.


Asunto(s)
Tejido Adiposo/inmunología , Biomarcadores/sangre , Neoplasias de la Mama/sangre , Obesidad/terapia , Tejido Adiposo/citología , Anciano , Antígenos CD34/metabolismo , Neoplasias de la Mama/inmunología , Supervivientes de Cáncer , Estudios Transversales , Dietoterapia , Terapia por Ejercicio , Femenino , Humanos , Antígenos Comunes de Leucocito/metabolismo , Persona de Mediana Edad , Obesidad/sangre , Obesidad/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Posmenopausia , Premenopausia , Células del Estroma/citología , Células del Estroma/inmunología
5.
Mol Carcinog ; 58(8): 1400-1409, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31020708

RESUMEN

We previously reported that ionizing radiation (IR) mediates cell death through the induction of CUGBP elav-like family member 2 (CELF2), a tumor suppressor. CELF2 is an RNA binding protein that modulates mRNA stability and translation. Since IR induces autophagy, we hypothesized that CELF2 regulates autophagy-mediated colorectal cancer (CRC) cell death. For clinical relevance, we determined CELF2 levels in The Cancer Genome Atlas (TCGA). Role of CELF2 in radiation response was carried out in CRC cell lines by immunoblotting, immunofluorescence, autophagic vacuole analyses, RNA stability assay, quantitative polymerase chain reaction and electron microscopy. In vivo studies were performed in a xenograft tumor model. TCGA analyses demonstrated that compared to normal tissue, CELF2 is expressed at significantly lower levels in CRC, and is associated with better overall 5-year survival in patients receiving radiation. Mechanistically, CELF2 increased levels of critical components of the autophagy cascade including Beclin-1, ATG5, and ATG12 by modulating mRNA stability. CELF2 also increased autophagic flux in CRC. IR significantly induced autophagy in CRC which correlates with increased levels of CELF2 and autophagy associated proteins. Silencing CELF2 with siRNA, mitigated IR induced autophagy. Moreover, knockdown of CELF2 in vivo conferred tumor resistance to IR. These studies elucidate an unrecognized role for CELF2 in inducing autophagy and potentiating the effects of radiotherapy in CRC.


Asunto(s)
Autofagia/fisiología , Proteínas CELF/metabolismo , Supervivencia Celular/efectos de la radiación , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/radioterapia , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Proteínas CELF/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Células HCT116 , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/genética , Pronóstico , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Radiación Ionizante , Trasplante Heterólogo
6.
Nucleic Acids Res ; 45(16): 9514-9527, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934484

RESUMEN

The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3'UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.


Asunto(s)
Proteína 1 Similar a ELAV/química , Fenantrenos/química , Fenantrenos/farmacología , Regiones no Traducidas 3' , Elementos Ricos en Adenilato y Uridilato , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Furanos , Humanos , Espectroscopía de Resonancia Magnética , Ratones Mutantes Neurológicos , Simulación de Dinámica Molecular , Fenantrenos/metabolismo , Mutación Puntual , Conformación Proteica , Dominios Proteicos , Quinonas , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Carcinog ; 55(11): 1503-1516, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26331352

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer deaths in the United States. It arises from loss of intestinal epithelial homeostasis and hyperproliferation of the crypt epithelium. In order to further understand the pathogenesis of CRC it is important to further understand the factors regulating intestinal epithelial proliferation and more specifically, regulation of the intestinal epithelial stem cell compartment. Here, we investigated the role of the RNA binding protein RBM3 in stem cell homeostasis in colorectal cancers. Using a doxycycline (Dox) inducible RBM3 overexpressing cell lines HCT 116 and DLD-1, we measured changes in side population (SP) cells that have high xenobiotic efflux capacity and increased capacity for self-renewal. In both cell lines, RBM3 induction showed significant increases in the percentage of side population cells. Additionally, we observed increases in spheroid formation and in cells expressing DCLK1, LGR5 and CD44Hi . As the Wnt/ß-catenin signaling pathway is important for both physiologic and cancer stem cells, we next investigated the effects of RBM3 overexpression on ß-catenin activity. RBM3 overexpression increased levels of nuclear ß-catenin as well as TCF/LEF transcriptional activity. In addition, there was inactivation of GSK3ß leading to decreased ß-catenin phosphorylation. Pharmacologic inhibition of GSK3ß using (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO) also recapitulates the RBM3 induced ß-catenin activity. In conclusion, we see that RNA binding protein RBM3 induces stemness in colorectal cancer cells through a mechanism involving suppression of GSK3ß activity thereby enhancing ß-catenin signaling. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Colorrectales/patología , Células Madre Neoplásicas/citología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Doxiciclina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HCT116 , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fosforilación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
9.
Biol Reprod ; 92(5): 132, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25833159

RESUMEN

Recent studies documented that the selective estrogen receptor modulator tamoxifen prevents follicle loss and promotes fertility following in vivo exposure of rodents to irradiation or ovotoxic cancer drugs, cyclophosphamide and doxorubicin. In an effort to characterize the ovarian-sparing mechanisms of tamoxifen in preantral follicle classes, cultured neonatal rat ovaries (Day 4, Sprague Dawley) were treated for 1-7 days with active metabolites of cyclophosphamide (i.e., 4-hydroxycyclophosphamide; CTX) (0, 1, and 10 µM) and tamoxifen (i.e., 4-hydroxytamoxifen; TAM) (0 and 10 µM) in vitro, and both apoptosis and follicle numbers were measured. CTX caused marked follicular apoptosis and follicular loss. TAM treatment decreased follicular loss and apoptosis from CTX in vitro. TAM alone had no effect on these parameters. IGF-1 and IGF-1 receptor were assessed in ovarian tissue showing no impact of TAM or CTX on these endpoints. Targeted mRNA analysis during follicular rescue by TAM revealed decreased expression of multiple genes related to inflammation, including mediators of lipoxygenase and prostaglandin production and signaling (Alox5, Pla2g1b, Ptgfr), cytokine binding (Il1r1, Il2rg ), apoptosis (Tnfrsf1a), second messenger signaling (Mapk1, Mapk14, Plcg1), as well as tissue remodeling and vasodilation (Bdkrb2, Klk15). The results suggest that TAM protects the ovary from CTX-mediated toxicity through direct ovarian actions that oppose follicular loss.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclofosfamida/toxicidad , Ovario/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Animales , Animales Recién Nacidos , Ciclofosfamida/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
10.
Cells ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056778

RESUMEN

Colorectal cancer (CRC) is the third most prevalent cancer worldwide. Current studies have demonstrated that tumor-derived extracellular vesicles (EVs) from different cancer cell types modulate the fibroblast microenvironment to contribute to cancer development and progression. Here, we isolated and characterized circulating large EVs (LEVs), small EVs (SEVs) and non-EV entities released in the plasma from wild-type (WT) mice and the APCMin/+ CRC mice model. Our results showed that human colon fibroblasts exposed from APC-EVs, but not from WT-EVs, exhibited the phenotypes of cancer-associated fibroblasts (CAFs) through EV-mediated NF-κB pathway activation. Cytokine array analysis on secreted proteins revealed elevated levels of inflammatory cytokine implicated in cancer growth and metastasis. Finally, non-activated cells co-cultured with supernatant from fibroblasts treated with APC-EVs showed increased mRNA expressions of CAFs markers, the ECM, inflammatory cytokines, as well as the expression of genes controlled by NF-κB. Altogether, our work suggests that EVs and non-EV components from APCMin/+ mice are endowed with pro-tumorigenic activities and promoted inflammation and a CAF-like state by triggering NF-κB signaling in fibroblasts to support CRC growth and progression. These findings provide insight into the interaction between plasma-derived EVs and human cells and can be used to design new CRC diagnosis and prognosis tools.


Asunto(s)
Vesículas Extracelulares , Fibroblastos , FN-kappa B , Transducción de Señal , Animales , Humanos , Ratones , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Colon/patología , Colon/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Microambiente Tumoral
11.
Int J Cancer ; 132(3): E128-38, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22907529

RESUMEN

The RNA-binding proteins TTP and HuR control expression of numerous genes associated with breast cancer pathogenesis by regulating mRNA stability. However, the role of genetic variation in TTP (ZFP36) and HuR (ELAVL1) genes is unknown in breast cancer prognosis. A total of 251 breast cancer patients (170 Caucasians and 81 African-Americans) were enrolled and followed up from 2001 to 2011 (or until death). Genotyping was performed for 10 SNPs in ZFP36 and 7 in ELAVL1 genes. On comparing both races with one another, significant differences were found for clinical and genetic variables. The influence of genetic polymorphisms on survival was analyzed by using Cox-regression, Kaplan-Meier analysis and the log-rank test. Univariate (Kaplan-Meier/Cox-regression) and multivariate (Cox-regression) analysis showed that the TTP gene polymorphism ZFP36*2 A > G was significantly associated with poor prognosis of Caucasian patients (HR = 2.03; 95% CI = 1.09-3.76; p = 0.025; log-rank p = 0.022). None of the haplotypes, but presence of more than six risk genotypes in Caucasian patients, was significantly associated with poor prognosis (HR=2.42; 95% CI = 1.17-4.99; p = 0.017; log-rank p = 0.007). The effect of ZFP36*2 A > G on gene expression was evaluated from patients' tissue samples. Both TTP mRNA and protein expression was significantly decreased in ZFP36*2 G allele carriers compared to A allele homozygotes. Conversely, upregulation of the TTP-target gene COX-2 was observed ZFP36*2 G allele carriers. Through its ability to attenuate TTP gene expression, the ZFP36*2 A > G gene polymorphism has appeared as a novel prognostic breast cancer marker in Caucasian patients.


Asunto(s)
Antígenos de Superficie/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Tristetraprolina/genética , Negro o Afroamericano/genética , Neoplasias de la Mama/etnología , Ciclooxigenasa 2/biosíntesis , Proteínas ELAV , Proteína 1 Similar a ELAV , Femenino , Variación Genética , Genotipo , Humanos , Estimación de Kaplan-Meier , Pronóstico , ARN Mensajero , Factores de Riesgo , Población Blanca/genética
12.
Recent Results Cancer Res ; 191: 7-37, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22893198

RESUMEN

The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3'UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.


Asunto(s)
Neoplasias Colorrectales/enzimología , Ciclooxigenasa 2/fisiología , Regiones no Traducidas 3'/genética , Animales , Neoplasias Colorrectales/genética , Ciclooxigenasa 2/genética , Epigénesis Genética , Receptores ErbB/fisiología , Humanos , Oxidorreductasas Intramoleculares/fisiología , MicroARNs/fisiología , Inestabilidad de Microsatélites , PPAR gamma/fisiología , Prostaglandina-E Sintasas , Prostaglandinas/metabolismo
13.
Cancer Res ; 83(21): 3507-3516, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683260

RESUMEN

The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.


Asunto(s)
Proteína 1 Similar a ELAV , Neoplasias , Humanos , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas ELAV/genética
14.
Cancer Metastasis Rev ; 30(3-4): 419-35, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22005950

RESUMEN

Many lines of evidence demonstrate that prostaglandins play an important role in cancer, and enhanced synthesis of prostaglandin E(2) (PGE(2)) is often observed in various human malignancies often associated with poor prognosis. PGE(2) synthesis is initiated with the release of arachidonic acid by phospholipase enzymes, where it is then converted into the intermediate prostaglandin prostaglandin H(2) (PGH(2)) by members of the cyclooxygenase family. The synthesis of PGE(2) from PGH(2) is facilitated by three different PGE synthases, and functional PGE(2) can promote tumor growth by binding to four EP receptors to activate signaling pathways that control cell proliferation, migration, apoptosis, and angiogenesis. An integral method of controlling gene expression is by posttranscriptional mechanisms that regulate mRNA stability and protein translation. Messenger RNA regulatory elements typically reside within the 3' untranslated region (3'UTR) of the transcript and play a critical role in targeting specific mRNAs for posttranscriptional regulation through microRNA (miRNA) binding and adenylate- and uridylate-rich element RNA-binding proteins. In this review, we highlight the current advances in our understanding of the impact these RNA sequence elements have upon regulating PGE(2) levels. We also identify various RNA sequence elements consistently observed within the 3'UTRs of the genes involved in the PGE(2) pathway, indicating these binding sites for miRNAs and RNA-binding proteins to be central regulators of PGE(2) synthesis and function. These findings may provide a rationale for the development of new therapeutic approaches to control tumor growth and metastasis promoted by elevated PGE(2) levels.


Asunto(s)
Dinoprostona/biosíntesis , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias/genética , Secuencias Reguladoras de Ácido Ribonucleico , Animales , Secuencia de Bases , Dinoprostona/metabolismo , Humanos , Neoplasias/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Receptores de Prostaglandina E/metabolismo
15.
J Pharmacol Exp Ther ; 341(1): 242-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22262921

RESUMEN

Vascular cyclooxygenase (COX)-2-dependent prostacyclin (PGI(2)) may affect angiogenesis by preventing endothelial activation and platelet release of angiogenic factors present in platelet α-granules. Thus, a profound inhibition of COX-2-dependent PGI(2) might be associated with changes in circulating markers of angiogenesis. We aimed to address this issue by performing a clinical study with celecoxib in familial adenomatous polyposis (FAP). In nine patients with FAP and healthy controls, pair-matched for gender and age, we compared systemic biosynthesis of PGI(2), thromboxane (TX) A(2), and prostaglandin (PG) E(2), assessing their urinary enzymatic metabolites, 2,3-dinor-6-keto PGF(1α) (PGI-M), 11-dehydro-TXB(2) (TX-M), and 11-α-hydroxy-9,15-dioxo-2,3,4,5-tetranor-prostane-1,20-dioic acid (PGE-M), respectively. The impact of celecoxib (400 mg b.i.d. for 7 days) on prostanoid biosynthesis and 14 circulating biomarkers of angiogenesis was evaluated in FAP. Intestinal tumorigenesis was associated with enhanced urinary TX-M levels, but unaffected by celecoxib, suggesting the involvement of a COX-1-dependent pathway, presumably from platelets. This was supported by the finding that in cocultures of a human colon adenocarcinoma cell line (HT-29) and platelets enhanced TXA(2) generation was almost completely inhibited by pretreatment of platelets with aspirin, a preferential inhibitor of COX-1. In FAP, celecoxib profoundly suppressed PGE(2) and PGI(2) biosynthesis that was associated with a significant increase in circulating levels of most proangiogenesis proteins but also the antiangiogenic tissue inhibitor of metalloproteinase 2. Urinary PGI-M, but not PGE-M, was negatively correlated with circulating levels of fibroblast growth factor 2 and angiogenin. In conclusion, inhibition of tumor COX-2-dependent PGE(2) by celecoxib may reduce tumor progression. However, the coincident depression of vascular PGI(2), in a context of enhanced TXA(2) biosynthesis, may modulate the attendant angiogenesis, contributing to variability in the chemopreventive efficacy of COX-2 inhibitors such as celecoxib.


Asunto(s)
Poliposis Adenomatosa del Colon/sangre , Neovascularización Fisiológica/fisiología , Prostaglandinas/biosíntesis , Pirazoles/farmacología , Sulfonamidas/farmacología , Poliposis Adenomatosa del Colon/tratamiento farmacológico , Adulto , Animales , Celecoxib , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Epoprostenol/antagonistas & inhibidores , Epoprostenol/biosíntesis , Femenino , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neovascularización Fisiológica/efectos de los fármacos , Prostaglandinas/sangre , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Tromboxano A2/antagonistas & inhibidores , Tromboxano A2/biosíntesis , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/sangre
16.
Cancer Biol Ther ; 23(1): 139-149, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35130122

RESUMEN

HuR overexpression is related to poor survival in patients with colon cancer. HuR overexpression leads to stabilization of tumor-promoting mRNAs by binding to 3'UTR-resident AREs. Exosomes, nanosized lipid bilayer vesicles, mediate many steps in cancer progression. The potential role of exosomal HuR in colon cancer lung metastasis is unclear. HuR expression was assessed immunohistochemically in tumor tissue samples from 20 patients with metastatic or nonmetastatic colon cancer and colon cancer lung metastasis and benign lung disease samples from ten patients. Exosomes were isolated from HCT116 WT and HuR KO colon cancer cells, and uptake of PKH67- and PKH26-labeled exosomes by BEAS-2B cells was evaluated using fluorescence and confocal microscopy. C-Myc and p21protein and mRNA levels were measured by western blotting and RT-qPCR, respectively. In clinical patients, HuR overexpression was significantly enhanced in colon tissues of patients with lung metastasis. HuR expression was higher in lung tissue with metastasis of colonic origin than with benign lung disease. The effect of HuR-containing CRC exosomes compared to HuR-deficient exosomes on wound closure was observed as enhanced proliferation. BEAS-2B cell migration and invasion were enhanced after HuR-containing exosomes treatment. BEAS-2B cells showed similar uptake of PKH67 (HCT116 WT)- and PKH26 (HCT116 HuR KO)-labeled exosomes. Exosomal HuR stabilized c-Myc mRNA and downregulated p21 expression, leading to G1/S transition, in human bronchial epithelial cells. HuR overexpression is associated with lung metastasis in colon cancer patients. Exosomal HuR derived from colon cancer cells alter the biological effect on normal lung epithelial cells.


Asunto(s)
Neoplasias del Colon , Proteína 1 Similar a ELAV , Exosomas , Neoplasias Pulmonares , MicroARNs , Proteínas Proto-Oncogénicas c-myc , ARN Mensajero , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteína 1 Similar a ELAV/genética , Exosomas/genética , Exosomas/metabolismo , Células HCT116 , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
17.
Mol Cell Biol ; 42(7): e0001822, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35703534

RESUMEN

Yes-associated protein 1 (YAP1) is indispensable for the development of mutant KRAS-driven pancreatic ductal adenocarcinoma (PDAC). High YAP1 mRNA is a prognostic marker for worse overall survival in patient samples; however, the regulatory mechanisms that mediate its overexpression are not well understood. YAP1 genetic alterations are rare in PDAC, suggesting that its dysregulation is likely not due to genetic events. HuR is an RNA-binding protein whose inhibition impacts many cancer-associated pathways, including the "conserved YAP1 signature" as demonstrated by gene set enrichment analysis. Screening publicly available and internal ribonucleoprotein immunoprecipitation (RNP-IP) RNA sequencing (RNA-Seq) data sets, we discovered that YAP1 is a high-confidence target, which was validated in vitro with independent RNP-IPs and 3' untranslated region (UTR) binding assays. In accordance with our RNA sequencing analysis, transient inhibition (e.g., small interfering RNA [siRNA] and small-molecular inhibition) and CRISPR knockout of HuR significantly reduced expression of YAP1 and its transcriptional targets. We used these data to develop a HuR activity signature (HAS), in which high expression predicts significantly worse overall and disease-free survival in patient samples. Importantly, the signature strongly correlates with YAP1 mRNA expression. These findings highlight a novel mechanism of YAP1 regulation, which may explain how tumor cells maintain YAP1 mRNA expression at dynamic times during pancreatic tumorigenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Regiones no Traducidas 3'/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Mensajero/genética , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Señalizadoras YAP , Neoplasias Pancreáticas
18.
Mol Cancer Ther ; 20(11): 2166-2176, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34413127

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal aggressive cancer, in part due to elements of the microenvironment (hypoxia, hypoglycemia) that cause metabolic network alterations. The FDA-approved antihelminthic pyrvinium pamoate (PP) has previously been shown to cause PDAC cell death, although the mechanism has not been fully determined. We demonstrated that PP effectively inhibited PDAC cell viability with nanomolar IC50 values (9-93 nmol/L) against a panel of PDAC, patient-derived, and murine organoid cell lines. In vivo, we demonstrated that PP inhibited PDAC xenograft tumor growth with both intraperitoneal (IP; P < 0.0001) and oral administration (PO; P = 0.0023) of human-grade drug. Metabolomic and phosphoproteomic data identified that PP potently inhibited PDAC mitochondrial pathways including oxidative phosphorylation and fatty acid metabolism. As PP treatment reduced oxidative phosphorylation (P < 0.001), leading to an increase in glycolysis (P < 0.001), PP was 16.2-fold more effective in hypoglycemic conditions similar to those seen in PDAC tumors. RNA sequencing demonstrated that PP caused a decrease in mitochondrial RNA expression, an effect that was not observed with established mitochondrial inhibitors rotenone and oligomycin. Mechanistically, we determined that PP selectively bound mitochondrial G-quadruplexes and inhibited mitochondrial RNA transcription in a G-quadruplex-dependent manner. This subsequently led to a 90% reduction in mitochondrial encoded gene expression. We are preparing to evaluate the efficacy of PP in PDAC in an IRB-approved window-of-opportunity trial (IND:144822).


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antihelmínticos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Metabolómica/métodos , Compuestos de Pirvinio/uso terapéutico , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Animales , Antihelmínticos/farmacología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Humanos , Ratones , Compuestos de Pirvinio/farmacología , Análisis de Supervivencia , Estados Unidos , United States Food and Drug Administration
19.
J Exp Med ; 198(3): 475-81, 2003 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-12885872

RESUMEN

The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in inflammatory states, and COX-2 overexpression plays a key role in carcinogenesis. To understand the mechanisms regulating COX-2 expression, we examined its posttranscriptional regulation mediated through the AU-rich element (ARE) within the COX-2 mRNA 3'-untranslated region (3'UTR). RNA binding studies, performed to identify ARE-binding regulatory factors, demonstrated binding of the translational repressor protein TIA-1 to COX-2 mRNA. The significance of TIA-1-mediated regulation of COX-2 expression was observed in TIA-1 null fibroblasts that produced significantly more COX-2 protein than wild-type fibroblasts. However, TIA-1 deficiency did not alter COX-2 transcription or mRNA turnover. Colon cancer cells demonstrated to overexpress COX-2 through increased polysome association with COX-2 mRNA also showed defective TIA-1 binding both in vitro and in vivo. These findings implicate that TIA-1 functions as a translational silencer of COX-2 expression and support the hypothesis that dysregulated RNA-binding of TIA-1 promotes COX-2 expression in neoplasia.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Isoenzimas/metabolismo , Proteínas de la Membrana/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Biosíntesis de Proteínas , Proteínas , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Ciclooxigenasa 2 , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Isoenzimas/genética , Proteínas de la Membrana/genética , Ratones , Proteínas de Unión a Poli(A) , Prostaglandina-Endoperóxido Sintasas/genética , Unión Proteica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Elementos Silenciadores Transcripcionales , Antígeno Intracelular 1 de las Células T , Células Tumorales Cultivadas
20.
Gastroenterology ; 136(5): 1669-79, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19208339

RESUMEN

BACKGROUND & AIMS: During tumorigenesis, loss of rapid messenger RNA (mRNA) decay allows for overexpression of cancer-associated genes. The RNA-binding proteins Hu antigen R (HuR) and tristetraprolin (TTP) bind AU-rich elements in the 3' untranslated region of many cancer-associated mRNAs and target them for stabilization or rapid decay, respectively. We examined the functions of HuR and TTP during colon tumorigenesis and their ability to regulate cyclooxygenase (COX-2), a mediator of prostaglandin synthesis that increases in the colon tumor microenvironment. METHODS: We evaluated expression of HuR and TTP during colorectal tumorigenesis and in colon cancer cells and associated them with COX-2 expression. HuR and TTP-inducible cells were created to investigate HuR- and TTP-mediated regulation of COX-2. RESULTS: In normal colon tissues, low levels of nuclear HuR and higher levels of TTP were observed. By contrast, increased HuR expression and cytoplasmic localization were observed in 76% of adenomas and 94% of adenocarcinomas, and TTP expression was lost in >75% of adenomas and adenocarcinomas. Similar results were obtained for HuR and TTP mRNA levels in normal and staged tumor samples. In both adenomas and adenocarcinomas, COX-2 overexpression was associated with increased HuR and decreased TTP (P < .0001); similar associations were observed in colon cancer cells. HuR overexpression in cells up-regulated COX-2 expression, whereas overexpression of TTP inhibited it; limited TTP expression antagonized HuR-mediated COX-2 overexpression. CONCLUSIONS: Increased expression of the mRNA stability factor HuR and loss of the decay factor TTP occurs during early stages of colorectal tumorigenesis. These changes promote COX-2 overexpression and could contribute to colon tumorigenesis.


Asunto(s)
Antígenos de Superficie/fisiología , Neoplasias del Colon/metabolismo , Ciclooxigenasa 2/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ARN/fisiología , Tristetraprolina/fisiología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenoma/genética , Adenoma/metabolismo , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Ciclooxigenasa 2/metabolismo , Citoplasma/metabolismo , Proteínas ELAV , Proteína 1 Similar a ELAV , Células HeLa , Humanos , Inmunohistoquímica , ARN Mensajero/análisis , Proteínas de Unión al ARN/metabolismo , Transfección , Tristetraprolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA