Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Protein Expr Purif ; 212: 106352, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37595854

RESUMEN

Insolubility and low expression are typical bottlenecks in the production of proteins for studying their function and structure using X-ray crystallography or nuclear magnetic resonance spectroscopy. Cold-active enzymes from polar microorganisms have unique structural features that render them unstable and thermolabile, and are responsible for decreased protein yield in heterologous expression systems. To address these challenges, we developed a heterologous protein expression system using a psychrophilic organism, Psychrobacter sp. PAMC 21119, as a protein expression host with its own promoter. We screened 11 promoters and evaluated their strength using quantitative real-time polymerase chain reaction and a reporter system harboring the SfGFP gene. The highest expression was achieved using promoters RH96_RS13655 (P21119_20930) and RH96_RS15090 (P21119_23410), regardless of the temperature used. The p20930 strain exhibited a maximum expression level 19.6-fold higher than that of its control at 20 °C and produced approximately 0.5 mg of protein per gram of dry cell weight. To our knowledge, this is the first report of a low-temperature recombinant protein expression system developed using Psychrobacter sp. that can be used to express various difficult-to-express and cold-active proteins.


Asunto(s)
Psychrobacter , Proteínas Fluorescentes Verdes/genética , Psychrobacter/genética , Frío , Cristalografía por Rayos X , Regiones Promotoras Genéticas
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569396

RESUMEN

This study aimed to elucidate the crystal structure and biochemically characterize the carboxylesterase EaEst2, a thermotolerant biocatalyst derived from Exiguobacterium antarcticum, a psychrotrophic bacterium. Sequence and phylogenetic analyses showed that EaEst2 belongs to the Family XIII group of carboxylesterases. EaEst2 has a broad range of substrate specificities for short-chain p-nitrophenyl (pNP) esters, 1-naphthyl acetate (1-NA), and 1-naphthyl butyrate (1-NB). Its optimal pH is 7.0, losing its enzymatic activity at temperatures above 50 °C. EaEst2 showed degradation activity toward bis(2-hydroxyethyl) terephthalate (BHET), a polyethylene terephthalate degradation intermediate. We determined the crystal structure of EaEst2 at a 1.74 Å resolution in the ligand-free form to investigate BHET degradation at a molecular level. Finally, the biochemical stability and immobilization of a crosslinked enzyme aggregate (CLEA) were assessed to examine its potential for industrial application. Overall, the structural and biochemical characterization of EaEst2 demonstrates its industrial potency as a biocatalyst.


Asunto(s)
Bacillaceae , Carboxilesterasa , Carboxilesterasa/genética , Filogenia , Bacillaceae/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Especificidad por Sustrato
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446348

RESUMEN

Ferulic acid and related hydroxycinnamic acids, used as antioxidants and preservatives in the food, cosmetic, pharmaceutical and biotechnology industries, are among the most abundant phenolic compounds present in plant biomass. Identification of novel compounds that can produce ferulic acid and hydroxycinnamic acids, that are safe and can be mass-produced, is critical for the sustainability of these industries. In this study, we aimed to obtain and characterize a feruloyl esterase (LaFae) from Lactobacillus acidophilus. Our results demonstrated that LaFae reacts with ethyl ferulate and can be used to effectively produce ferulic acid from wheat bran, rice bran and corn stalks. In addition, xylanase supplementation was found to enhance LaFae enzymatic hydrolysis, thereby augmenting ferulic acid production. To further investigate the active site configuration of LaFae, crystal structures of unliganded and ethyl ferulate-bound LaFae were determined at 2.3 and 2.19 Å resolutions, respectively. Structural analysis shows that a Phe34 residue, located at the active site entrance, acts as a gatekeeper residue and controls substrate binding. Mutating this Phe34 to Ala produced an approximately 1.6-fold increase in LaFae activity against p-nitrophenyl butyrate. Our results highlight the considerable application potential of LaFae to produce ferulic acid from plant biomass and agricultural by-products.


Asunto(s)
Ácidos Cumáricos , Lactobacillus acidophilus , Ácidos Cumáricos/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Plantas/metabolismo
4.
Biochem Biophys Res Commun ; 629: 159-164, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36122453

RESUMEN

S-Formylglutathione hydrolase was originally known to catalyze the hydrolysis of S-formylglutathione to formate and glutathione. However, this enzyme has a broader esterase activity toward substrates containing thioester and ester bonds. In a previous study, we identified a new S-formylglutathione hydrolase (VaSFGH) gene in the Antarctic bacterium Variovorax sp. PAMC 28711, and recombinant VaSFGH protein was purified and characterized. Previous enzyme activity assays showed that VaSFGH has high activity, especially toward short-chain p-nitrophenyl esters (C2-C4). In this study, we determined the crystal structure of substrate-free VaSFGH at a resolution of 2.38 Å. In addition, p-nitrophenyl ester-bound VaSFGH structure models were generated by molecular docking simulations to obtain structural evidence of its substrate specificity. Comparative structural analysis of the apo-form and p-nitrophenyl ester-bound VaSFGH model structures revealed that large substrates could not bind inside the hydrophobic substrate-binding pocket because of the intrinsically static and relatively small substrate-binding pocket size of VaSFGH. This study provides useful information for further protein engineering of SFGHs for industrial use.


Asunto(s)
Formiatos , Tioléster Hidrolasas , Cristalografía por Rayos X , Ésteres , Glutatión , Simulación del Acoplamiento Molecular , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tioléster Hidrolasas/metabolismo
5.
Environ Res ; 212(Pt A): 113233, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35390302

RESUMEN

Ice-binding proteins (IBPs), originating from Arctic or Antarctic microorganisms, have freeze-inhibiting characteristics, allowing these organisms to survive in polar regions. Despite their significance in polar environments, the mechanism through which IBPs affect the chemical reactions in ice by controlling ice crystal formation has not yet been reported. In this study, a new mechanism for iodide (I-) activation into triiodide (I3-), which is the abundant iodine species in seawater, by using hydrogen peroxide (H2O2) in a frozen solution with IBPs was developed. A significant enhancement of I- activation into I3- was observed in the presence of Arctic-yeast-originating extracellular ice-binding glycoprotein (LeIBP) isolated from Leucosporidium sp. AY30, and a further increase in the I3- concentration was observed with the introduction of H2O2 to the frozen solution (25 times higher than in the aqueous solution after 24 h of reaction). The reaction in the ice increased with an increase in LeIBP concentration. The in-situ pH measurement in ice using cresol red (CR) revealed protons accumulated in the ice grain boundaries by LeIBP. However, the presence of LeIBP did not influence the acidity of the ice. The enhanced freeze concentration effect of H2O2 by LeIBP indicated that larger ice granules were formed in the presence of LeIBP. The results suggest that LeIBP affects the formation and morphology of ice granules, which reduces the total volume of ice boundaries throughout the ice. This leads to an increased local concentration of I- and H2O2 within the ice grain boundaries. IBP-assisted production of gaseous iodine in a frozen environment provides a previously unrecognized formation mechanism of active iodine species in the polar regions.


Asunto(s)
Basidiomycota , Yodo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/farmacología , Basidiomycota/química , Basidiomycota/metabolismo , Congelación , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno , Hielo , Yoduros
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362105

RESUMEN

Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of ß-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Sphingomonas , Humanos , Cristalografía por Rayos X , Especificidad por Sustrato , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Sitios de Unión
7.
Nucleic Acids Res ; 47(14): 7476-7493, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31188450

RESUMEN

Pathogenic bacteria encounter host-imposed manganese (Mn) limitation during infection. Herein we report that in the human pathogen Streptococcus pyogenes, the adaptive response to Mn limitation is controlled by a DtxR family metalloregulator, MtsR. Genes upregulated by MtsR during Mn limitation include Mn (mtsABC) and Fe acquisition systems (sia operon), and a metal-independent DNA synthesis enzyme (nrdFEI.2). To elucidate the mechanism of metal sensing and gene regulation by MtsR, we determined the crystal structure of MtsR. MtsR employs two Mn-sensing sites to monitor metal availability, and metal occupancy at each site influences MtsR regulatory activity. The site 1 acts as the primary Mn sensing site, and loss of metal at site 1 causes robust upregulation of mtsABC. The vacant site 2 causes partial induction of mtsABC, indicating that site 2 functions as secondary Mn sensing site. Furthermore, we show that the C-terminal FeoA domains of adjacent dimers participate in the oligomerization of MtsR on DNA, and multimerization is critical for MtsR regulatory activity. Finally, the mtsR mutant strains defective in metal sensing and oligomerization are attenuated for virulence in a mouse model of invasive infection, indicating that Mn sensing and gene regulation by MtsR are critical processes during S. pyogenes infection.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Manganeso/metabolismo , Streptococcus pyogenes/genética , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Manganeso/química , Ratones , Modelos Moleculares , Mutación , Dominios Proteicos , Homología de Secuencia de Aminoácido , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidad , Virulencia/genética
8.
Infect Immun ; 88(8)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32393509

RESUMEN

Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9-/- mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9-/- mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.


Asunto(s)
Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno/inmunología , Complejo de Antígeno L1 de Leucocito/inmunología , Regulón , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/patogenicidad , Zinc/metabolismo , Animales , Proteínas Bacterianas/inmunología , Sitios de Unión , Unión Competitiva , Calgranulina B/genética , Calgranulina B/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Transporte Iónico , Complejo de Antígeno L1 de Leucocito/genética , Ratones , Ratones Noqueados , Unión Proteica , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/mortalidad , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/metabolismo , Análisis de Supervivencia , Virulencia , Zinc/inmunología
9.
Proc Natl Acad Sci U S A ; 114(40): E8498-E8507, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923955

RESUMEN

Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A Streptococcus (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of speB gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Exotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad , Virulencia , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Exotoxinas/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Homología de Secuencia , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/aislamiento & purificación
10.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29531135

RESUMEN

Bacterial virulence factor production is a highly coordinated process. The temporal pattern of bacterial gene expression varies in different host anatomic sites to overcome niche-specific challenges. The human pathogen group A streptococcus (GAS) produces a potent secreted protease, SpeB, that is crucial for pathogenesis. Recently, we discovered that a quorum sensing pathway comprised of a leaderless short peptide, SpeB-inducing peptide (SIP), and a cytosolic global regulator, RopB, controls speB expression in concert with bacterial population density. The SIP signaling pathway is active in vivo and contributes significantly to GAS invasive infections. In the current study, we investigated the role of the SIP signaling pathway in GAS-host interactions during oropharyngeal colonization. The SIP signaling pathway is functional during growth ex vivo in human saliva. SIP-mediated speB expression plays a crucial role in GAS colonization of the mouse oropharynx. GAS employs a distinct pattern of SpeB production during growth ex vivo in saliva that includes a transient burst of speB expression during early stages of growth coupled with sustained levels of secreted SpeB protein. SpeB production aids GAS survival by degrading LL37, an abundant human antimicrobial peptide. We found that SIP signaling occurs during growth in human blood ex vivo. Moreover, the SIP signaling pathway is critical for GAS survival in blood. SIP-dependent speB regulation is functional in strains of diverse emm types, indicating that SIP signaling is a conserved virulence regulatory mechanism. Our discoveries have implications for future translational studies.


Asunto(s)
Orofaringe/inmunología , Percepción de Quorum/inmunología , Transducción de Señal/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/crecimiento & desarrollo , Factores de Virulencia/inmunología , Virulencia/inmunología , Animales , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Orofaringe/microbiología , Orofaringe/fisiopatología , Percepción de Quorum/fisiología , Transducción de Señal/fisiología , Virulencia/genética , Factores de Virulencia/genética
11.
Mol Microbiol ; 99(6): 1119-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26714274

RESUMEN

Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated the presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Exotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Relación Estructura-Actividad , Transcripción Genética , Virulencia
13.
Biochem Biophys Res Commun ; 465(1): 12-8, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26206084

RESUMEN

Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their ß-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical ß-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the ß-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the ß3-ß4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions.


Asunto(s)
Proteínas Aviares/química , Proteínas de Unión a Ácidos Grasos/química , Ácido Linoleico/química , Ácido Palmítico/química , Spheniscidae/metabolismo , Secuencia de Aminoácidos , Naftalenosulfonatos de Anilina , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Colorantes Fluorescentes , Expresión Génica , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Spheniscidae/genética
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1061-73, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699650

RESUMEN

Ice-binding proteins (IBPs) inhibit ice growth through direct interaction with ice crystals to permit the survival of polar organisms in extremely cold environments. FfIBP is an ice-binding protein encoded by the Antarctic bacterium Flavobacterium frigoris PS1. The X-ray crystal structure of FfIBP was determined to 2.1 Šresolution to gain insight into its ice-binding mechanism. The refined structure of FfIBP shows an intramolecular disulfide bond, and analytical ultracentrifugation and analytical size-exclusion chromatography show that it behaves as a monomer in solution. Sequence alignments and structural comparisons of IBPs allowed two groups of IBPs to be defined, depending on sequence differences between the α2 and α4 loop regions and the presence of the disulfide bond. Although FfIBP closely resembles Leucosporidium (recently re-classified as Glaciozyma) IBP (LeIBP) in its amino-acid sequence, the thermal hysteresis (TH) activity of FfIBP appears to be tenfold higher than that of LeIBP. A comparison of the FfIBP and LeIBP structures reveals that FfIBP has different ice-binding residues as well as a greater surface area in the ice-binding site. Notably, the ice-binding site of FfIBP is composed of a T-A/G-X-T/N motif, which is similar to the ice-binding residues of hyperactive antifreeze proteins. Thus, it is proposed that the difference in TH activity between FfIBP and LeIBP may arise from the amino-acid composition of the ice-binding site, which correlates with differences in affinity and surface complementarity to the ice crystal. In conclusion, this study provides a molecular basis for understanding the antifreeze mechanism of FfIBP and provides new insights into the reasons for the higher TH activity of FfIBP compared with LeIBP.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas Bacterianas/química , Flavobacterium/química , Cristalografía por Rayos X , Hielo , Modelos Moleculares , Estructura Terciaria de Proteína
15.
Sci Rep ; 14(1): 3234, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331970

RESUMEN

Many polar organisms produce antifreeze proteins (AFPs) and ice-binding proteins (IBPs) to protect themselves from ice formation. As IBPs protect cells and organisms, the potential of IBPs as natural or biological cryoprotective agents (CPAs) for the cryopreservation of animal cells, such as oocytes and sperm, has been explored to increase the recovery rate after freezing-thawing. However, only a few IBPs have shown success in cryopreservation, possibly because of the presence of protein denaturants, such as dimethyl sulfoxide, alcohols, or ethylene glycol, in freezing buffer conditions, rendering the IBPs inactive. Therefore, we investigated the thermal and chemical stability of FfIBP isolated from Antarctic bacteria to assess its suitability as a protein-based impermeable cryoprotectant. A molecular dynamics (MD) simulation identified and generated stability-enhanced mutants (FfIBP_CC1). The results indicated that FfIBP_CC1 displayed enhanced resistance to denaturation at elevated temperatures and chemical concentrations, compared to wildtype FfIBP, and was functional in known CPAs while retaining ice-binding properties. Given that FfIBP shares an overall structure similar to DUF3494 IBPs, which are recognized as the most widespread IBP family, these findings provide important structural information on thermal and chemical stability, which could potentially be applied to other DUF3494 IBPs for future protein engineering.


Asunto(s)
Proteínas Portadoras , Hielo , Masculino , Animales , Proteínas Portadoras/metabolismo , Semen/metabolismo , Bacterias/metabolismo , Congelación , Proteínas Anticongelantes/química , Crioprotectores/farmacología , Crioprotectores/metabolismo
16.
Int J Biol Macromol ; 264(Pt 1): 130419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423431

RESUMEN

Epoxide hydrolases (EHs), which catalyze the transformation of epoxides to diols, are present in many eukaryotic and prokaryotic organisms. They have recently drawn considerable attention from organic chemists owing to their application in the semisynthesis of enantiospecific diol compounds. Here, we report the crystal structures of BoEH from Bosea sp. PAMC 26642 and CaEH from Caballeronia sordidicola PAMC 26510 at 1.95 and 2.43 Å resolution, respectively. Structural analysis showed that the overall structures of BoEH and CaEH commonly possess typical α/ß hydrolase fold with the same ring-opening residues (Tyr-Tyr) and conserved catalytic triad residues (Asp-Asp-His). However, the two enzymes were found to have significantly different sequence compositions in the cap domain region, which is involved in the formation of the substrate-binding site in both enzymes. Enzyme activity assay results showed that BoEH had the strongest activity toward the linear aliphatic substrates, whereas CaEH had a higher preference for aromatic- and cycloaliphatic substrates. Computational docking simulations and tunnel identification revealed important residues with different substrate-binding preferences. Collectively, structure comparison studies, together with ligand docking simulation results, suggested that the differences in substrate-binding site residues were highly correlated with substrate specificity.


Asunto(s)
Bacterias , Epóxido Hidrolasas , Epóxido Hidrolasas/química , Sitios de Unión , Catálisis , Bacterias/metabolismo , Especificidad por Sustrato
17.
Int J Antimicrob Agents ; 63(6): 107171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588869

RESUMEN

OBJECTIVES: Stenotrophomonas spp. intrinsically resistant to many ß-lactam antibiotics are found throughout the environment. CESS-1 identified in Stenotrophomonas sp. KCTC 12332 is an uncharacterized class A ß-lactamase. The goal of this study was to reveal biochemical and structural characteristics of CESS-1. METHODS: The hydrolytic activities of CESS-1 towards penicillins (penicillin G and ampicillin), cephalosporins (cephalexin, cefaclor, and cefotaxime), and carbapenems (imipenem and meropenem) was spectrophotometrically monitored. Structural information on E166Q mutants of CESS-1 acylated by cefaclor, cephalexin, or ampicillin were determined by X-ray crystallography. RESULTS: CESS-1 displayed hydrolytic activities toward penicillins and cephalosporins, with negligible activity toward carbapenems. Although cefaclor, cephalexin, and ampicillin have similar structures with identical R1 side chains, the catalytic parameters of CESS-1 toward them were distinct. The kcat values for cefaclor, cephalexin, and ampicillin were 1249.6 s-1, 204.3 s-1, and 69.8 s-1, respectively, with the accompanying KM values of 287.6 µM, 236.7 µM, and 28.8 µM, respectively. CONCLUSIONS: CESS-1 was able to discriminate between cefaclor and cephalexin with a single structural difference at C3 position: -Cl (cefaclor) and -CH3 (cephalexin). Structural comparisons among three E166Q mutants of CESS-1 acylated by cefaclor, cephalexin, or ampicillin, revealed that cooperative positional changes in the R1 side chain of substrates and their interaction with the ß5-ß6 loop affect the distance between Asn170 and the deacylating water at the acyl-enzyme intermediate state. This is directly associated with the differential hydrolytic activities of CESS-1 toward the three structurally similar ß-lactam antibiotics.


Asunto(s)
Stenotrophomonas , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Especificidad por Sustrato , Cristalografía por Rayos X , Stenotrophomonas/genética , Stenotrophomonas/enzimología , Stenotrophomonas/metabolismo , Stenotrophomonas/química , Hidrólisis , Antibacterianos/farmacología , Antibacterianos/metabolismo , Carbapenémicos/farmacología , Carbapenémicos/metabolismo , Cefalosporinas/metabolismo , Cefalosporinas/farmacología , Penicilinas/metabolismo , Penicilinas/farmacología , Cinética
18.
PLoS One ; 19(3): e0298999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526988

RESUMEN

Sulfurtransferases transfer of sulfur atoms from thiols to acceptors like cyanide. They are categorized as thiosulfate sulfurtransferases (TSTs) and 3-mercaptopyruvate sulfurtransferases (MSTs). TSTs transfer sulfur from thiosulfate to cyanide, producing thiocyanate. MSTs transfer sulfur from 3-mercaptopyruvate to cyanide, yielding pyruvate and thiocyanate. The present study aimed to isolate and characterize the sulfurtransferase FrST from Frondihabitans sp. PAMC28461 using biochemical and structural analyses. FrST exists as a dimer and can be classified as a TST rather than an MST according to sequence-based clustering and enzyme activity. Furthermore, the discovery of activity over a wide temperature range and the broad substrate specificity exhibited by FrST suggest promising prospects for its utilization in industrial applications, such as the detoxification of cyanide.


Asunto(s)
Cisteína/análogos & derivados , Tiocianatos , Tiosulfatos , Sulfurtransferasas/química , Tiosulfato Azufretransferasa , Ácido Pirúvico , Cianuros , Azufre
19.
Nat Microbiol ; 9(2): 502-513, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228859

RESUMEN

Probiotic supplements are suggested to promote human health by preventing pathogen colonization. However, the mechanistic bases for their efficacy in vivo are largely uncharacterized. Here using metabolomics and bacterial genetics, we show that the human oral probiotic Streptococcus salivarius K12 (SAL) produces salivabactin, an antibiotic that effectively inhibits pathogenic Streptococcus pyogenes (GAS) in vitro and in mice. However, prophylactic dosing with SAL enhanced GAS colonization in mice and ex vivo in human saliva. We showed that, on co-colonization, GAS responds to a SAL intercellular peptide signal that controls SAL salivabactin production. GAS produces a secreted protease, SpeB, that targets SAL-derived salivaricins and enhances GAS survival. Using this knowledge, we re-engineered probiotic SAL to prevent signal eavesdropping by GAS and potentiate SAL antimicrobials. This engineered probiotic demonstrated superior efficacy in preventing GAS colonization in vivo. Our findings show that knowledge of interspecies interactions can identify antibiotic- and probiotic-based strategies to combat infection.


Asunto(s)
Probióticos , Infecciones Estreptocócicas , Animales , Humanos , Ratones , Antibacterianos , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes , Saliva
20.
J Biol Chem ; 287(14): 11460-8, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22303017

RESUMEN

Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ∼25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-Å resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed ß-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96-115 form a long α-helix that packs along one face of the ß-helix), and a C-terminal hydrophobic loop region ((243)PFVPAPEVV(251)). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn(185) provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common ß-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Basidiomycota , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hielo , Secuencia de Aminoácidos , Regiones Árticas , Sitios de Unión , Cristalografía por Rayos X , Glicosilación , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA