RESUMEN
Elements (bioelements) are necessary factors required for the physiological function of organisms. They are critically involved in fundamental processes of life. Extra- and intracellular message and metabolic pathway factors as well as structural components include one or many elements in their functional structure. Recent years have seen an intensification in terms of knowledge gained about the roles of elements in anxiety disorders. In this chapter we present a review of the most important current data concerning the involvement of zinc, magnesium, copper, lithium, iron, and manganese, and their deficiency, in the pathophysiology and treatment of anxiety.
Asunto(s)
Trastornos de Ansiedad/etiología , Ansiedad/etiología , Enfermedades Carenciales/fisiopatología , Modelos Animales de Enfermedad , Oligoelementos/deficiencia , Animales , Ansiedad/prevención & control , Trastornos de Ansiedad/prevención & control , Enfermedades Carenciales/dietoterapia , Enfermedades Carenciales/psicología , Suplementos Dietéticos , Humanos , Magnesio/uso terapéutico , Deficiencia de Magnesio/dietoterapia , Deficiencia de Magnesio/fisiopatología , Deficiencia de Magnesio/psicología , Oligoelementos/uso terapéutico , Zinc/deficiencia , Zinc/uso terapéuticoRESUMEN
Depression is a serious mental illness. To study the mechanisms of diseases and search for new, more effective therapies, animal models are used. Unfortunately, none of the available models does reflect all symptoms of depression. Zinc deficiency is proposed as a new animal model of depression. However, it has not been yet validated in a detailed manner. Recently, spectroscopic techniques are increasingly being used both in clinical and preclinical studies. Here we examined the effect of zinc deficiency and amitryptyline treatment on the phospholipid - protein balance in the blood serum of rats using Raman, Fourier Transform Infra Red (FTIR) and UV-vis technique. Male Sprague Dawley rats were fed with a zinc ample diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then amitriptyline administration (AMI, 10mg/kg, i.p.) was started. After injecting the drug for 2-weeks, blood samples were collected and analyzed. It was found that zinc deficiency decreases both the level of phospholipids and proteins and also causes structural changes in their structures. In the ZnD group amitriptyline treatment influenced the protein level and structure. UV-vis spectroscopy combined with the second derivative calculated from the FTIR spectra provided information that the proteins in blood serum of rat fed with a low Zn diet regain their intact structure after amitriptyline medication. Simultaneously, the antidepressant therapy did not have any effect on the level of phospholipids in this group of rats. Additionally, our results show, that amitriptyline administration can change the structure of phospholipids in rats subjected to zinc ample diet. This altered structure of phospholipids was identified as shortening of carbon chains. Our findings indicate that the decreased level of zinc may be the cause of depressive disorders, as it leads to changes in the phospholipid-protein balance necessary for the proper functioning of the body. This study also shows possible new applications of spectroscopic techniques in the diagnosis of affective disorders, and maybe even identifies markers of depressive disorders.