Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Biol ; 32(23): 5083-5098.e6, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36379215

RESUMEN

Programmed DNA elimination (PDE) is a notable exception to the paradigm of genome integrity. In metazoa, PDE often occurs coincident with germline to somatic cell differentiation. During PDE, portions of genomic DNA are lost, resulting in reduced somatic genomes. Prior studies have described the sequences lost, as well as chromosome behavior, during metazoan PDE. However, a system for studying the mechanisms and consequences of PDE in metazoa is lacking. Here, we present a functional and genetic model for PDE in the free-living Rhabditidae nematode Oscheius tipulae, a family that also includes Caenorhabditis elegans. O. tipulae was recently suggested to eliminate DNA. Using staged embryos and DNA FISH, we showed that O. tipulae PDE occurs during embryogenesis at the 8-16 cell stages. We identified a conserved motif, named Sequence For Elimination (SFE), for all 12 break sites on the six chromosomes at the junctions of retained and eliminated DNA. SFE mutants exhibited a "fail-to-eliminate" phenotype only at the modified sites. END-seq revealed that breaks can occur at multiple positions within the SFE, with extensive end resection followed by telomere addition to both retained and eliminated ends. We identified many functional SFEs at the chromosome ends through END-seq in the wild-type embryos, genome sequencing of SFE mutants, and comparative genomics of 23 wild isolates. We suggest that these alternative SFEs provide flexibility in the sequences eliminated and a fail-safe mechanism for PDE. These studies establish O. tipulae as a new, attractive model for studying the mechanisms and consequences of PDE in a metazoan.


Asunto(s)
Genómica , Modelos Genéticos , Animales , ADN
2.
J Neurosci ; 30(19): 6782-92, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20463240

RESUMEN

The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of Drosophila melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short- and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Memoria a Corto Plazo/fisiología , Memoria/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Ritmo Circadiano/fisiología , Análisis Mutacional de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Datos de Secuencia Molecular , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Isoformas de Proteínas/metabolismo , Conducta Sexual Animal/fisiología , Factores de Tiempo
3.
Dev Cell ; 8(3): 331-42, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737929

RESUMEN

Translational regulation of maternal mRNAs in distinct temporal and spatial patterns underlies many key decisions in developing eggs and embryos. In Drosophila, Orb is responsible for mediating the translational activation of mRNAs localized within the developing oocyte. Orb is a germline-specific RNA binding protein and is one of the founding members of the CPEB family of translational regulators. Here we show that Orb associates with the Drosophila Fragile X Mental Retardation (dFMR1) protein as part of a ribonucleoprotein complex that controls the localized translation of mRNAs in developing egg chambers. One of the key orb regulatory targets is orb mRNA, and this autoregulatory activity is critical for ensuring that Orb protein is expressed at high levels in the oocyte. We show that dFMR1 functions as a negative regulator in the orb autoregulatory circuit, downregulating orb mRNA translation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Oocitos/crecimiento & desarrollo , Oogénesis/fisiología , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Oocitos/metabolismo , Oogénesis/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
4.
Dev Cell ; 8(1): 43-52, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15621528

RESUMEN

Fragile X syndrome, the most common form of inherited mental retardation, is caused by loss of function for the Fragile X Mental Retardation 1 gene (FMR1). FMR1 protein (FMRP) has specific mRNA targets and is thought to be involved in their transport to subsynaptic sites as well as translation regulation. We report a saturating genetic screen of the Drosophila autosomal genome to identify functional partners of dFmr1. We recovered 19 mutations in the tumor suppressor lethal (2) giant larvae (dlgl) gene and 90 mutations at other loci. dlgl encodes a cytoskeletal protein involved in cellular polarity and cytoplasmic transport and is regulated by the PAR complex through phosphorylation. We provide direct evidence for a Fmrp/Lgl/mRNA complex, which functions in neural development in flies and is developmentally regulated in mice. Our data suggest that Lgl may regulate Fmrp/mRNA sorting, transport, and anchoring via the PAR complex.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Drosophila/metabolismo , Genes Supresores de Tumor/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Western Blotting/métodos , Fraccionamiento Celular/métodos , Células Cultivadas , Clonación Molecular/métodos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Drosophila , Ojo/patología , Ojo/ultraestructura , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica/métodos , Ratones , Microscopía Electrónica de Rastreo/métodos , Mutagénesis , Mutación , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Mensajero/metabolismo , Retina/patología , Retina/ultraestructura , Fracciones Subcelulares/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
5.
Neuron ; 45(5): 753-64, 2005 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-15748850

RESUMEN

Fragile X syndrome is a leading heritable cause of mental retardation that results from the loss of FMR1 gene function. A Drosophila model for Fragile X syndrome, based on the loss of dfmr1 activity, exhibits phenotypes that bear similarity to Fragile X-related symptoms. Herein, we demonstrate that treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium can rescue courtship and mushroom body defects observed in these flies. Furthermore, we demonstrate that dfmr1 mutants display cognitive deficits in experience-dependent modification of courtship behavior, and treatment with mGluR antagonists or lithium restores these memory defects. These findings implicate enhanced mGluR signaling as the underlying cause of the cognitive, as well as some of the behavioral and neuronal, phenotypes observed in the Drosophila Fragile X model. They also raise the possibility that compounds having similar effects on metabotropic glutamate receptors may ameliorate cognitive and behavioral defects observed in Fragile X patients.


Asunto(s)
Cortejo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Cuerpos Pedunculados/fisiología , Plasticidad Neuronal/fisiología , Animales , Cortejo/psicología , Drosophila , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/psicología , Litio/farmacología , Litio/uso terapéutico , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Cuerpos Pedunculados/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
6.
Mol Neurobiol ; 56(1): 711-721, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29796988

RESUMEN

The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Genoma , Animales , Núcleo Celular/metabolismo , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Inestabilidad Genómica , Humanos , Modelos Biológicos
7.
Neuron ; 34(6): 973-84, 2002 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12086644

RESUMEN

Fragile X mental retardation is a prominent genetic disorder caused by the lack of the FMR1 gene product, a known RNA binding protein. Specific physiologic pathways regulated by FMR1 function have yet to be identified. Adult dfmr1 (also called dfxr) mutant flies display arrhythmic circadian activity and have erratic patterns of locomotor activity, whereas overexpression of dFMR1 leads to a lengthened period. dfmr1 mutant males also display reduced courtship activity which appears to result from their inability to maintain courtship interest. Molecular analysis fails to reveal any defects in the expression of clock components; however, the CREB output is affected. Morphological analysis of neurons required for normal circadian behavior reveals subtle abnormalities, suggesting that defects in axonal pathfinding or synapse formation may cause the observed behavioral defects.


Asunto(s)
Ritmo Circadiano/genética , Cortejo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN , Alelos , Animales , Ritmo Circadiano/fisiología , Drosophila , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Circadianas Period
8.
Genetics ; 175(3): 1241-50, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17194772

RESUMEN

Fragile X mental retardation proteins (FMRP) are RNA-binding proteins that interact with a subset of cellular RNAs. Several RNA-binding domains have been identified in FMRP, but the contribution of these individual domains to FMRP function in an animal model is not well understood. In this study, we have generated flies with point mutations in the KH domains of the Drosophila melanogaster fragile X gene (dfmr1) in the context of a genomic rescue fragment. The substitutions of conserved isoleucine residues within the KH domains with asparagine are thought to impair binding of RNA substrates and perhaps the ability of FMRP to assemble into mRNP complexes. The mutants were analyzed for defects in development and behavior that are associated with deletion null alleles of dfmr1. We find that these KH domain mutations result in partial loss of function or no significant loss of function for the phenotypes assayed. The phenotypes resulting from these KH domain mutants imply that the capacities of the mutant proteins to bind RNA and form functional mRNP complexes are not wholly disrupted and are consistent with biochemical models suggesting that RNA-binding domains of FMRP can function independently.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Isoleucina/genética , Fenotipo , Mutación Puntual/genética , Análisis de Varianza , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Inmunohistoquímica , Mutagénesis Sitio-Dirigida , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Conducta Sexual Animal/fisiología
9.
Fly (Austin) ; 3(1): 39-49, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19164936

RESUMEN

Development of a drug and its safe therapeutic application necessitates using animal models for testing purposes. While testing with mammalian models is essential prior to approval for human trials, the use of invertebrate animal models that are amenable to molecular genetic manipulations provide experimental and biological advantages that can streamline the discovery and testing process. Among the benefits of a genetics-based approach is the ability to screen for genes/proteins that may be novel drug targets, and the expedited development of genetic backgrounds that more accurately reflect a specific disease state. An invertebrate model may provide a more robust phenotype for screening, a situation that may arise when there is unanticipated genetic redundancy present in the mammalian model. Finally, the comparatively short generation time and fecundity of invertebrate models allows for increased experimental throughput. Together, these factors may contribute towards savings in time and cost during the drug discovery process.


Asunto(s)
Drosophila/efectos de los fármacos , Drosophila/genética , Descubrimiento de Drogas/métodos , Alternativas a las Pruebas en Animales , Animales , Drosophila/fisiología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Genoma de los Insectos , Humanos , Masculino , Modelos Animales , Modelos Genéticos , Modelos Neurológicos , Mutación , Oncogenes , Especificidad de la Especie , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA