Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 138(12): 2555-65, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21610032

RESUMEN

Waardenburg syndromes are characterized by pigmentation and autosensory hearing defects, and mutations in genes encoding transcription factors that control neural crest specification and differentiation are often associated with Waardenburg and related disorders. For example, mutations in SOX10 result in a severe form of Waardenburg syndrome, Type IV, also known as Waardenburg-Hirschsprung disease, characterized by pigmentation and other neural crest defects, including defective innervation of the gut. SOX10 controls neural crest development through interactions with other transcription factors. The MADS box transcription factor MEF2C is an important regulator of brain, skeleton, lymphocyte and cardiovascular development and is required in the neural crest for craniofacial development. Here, we establish a novel role for MEF2C in melanocyte development. Inactivation of Mef2c in the neural crest of mice results in reduced expression of melanocyte genes during development and a significant loss of pigmentation at birth due to defective differentiation and reduced abundance of melanocytes. We identify a transcriptional enhancer of Mef2c that directs expression to the neural crest and its derivatives, including melanocytes, in transgenic mouse embryos. This novel Mef2c neural crest enhancer contains three functional SOX binding sites and a single essential MEF2 site. We demonstrate that Mef2c is a direct transcriptional target of SOX10 and MEF2 via this evolutionarily conserved enhancer. Furthermore, we show that SOX10 and MEF2C physically interact and function cooperatively to activate the Mef2c gene in a feed-forward transcriptional circuit, suggesting that MEF2C might serve as a potentiator of the transcriptional pathways affected in Waardenburg syndromes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Melanocitos/citología , Factores Reguladores Miogénicos/fisiología , Factores de Transcripción SOXE/fisiología , Transcripción Genética , Animales , Embrión de Mamíferos , Enfermedad de Hirschsprung , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Cresta Neural/crecimiento & desarrollo , Síndrome de Waardenburg/genética
2.
Mol Cell Biol ; 24(9): 3757-68, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15082771

RESUMEN

The HRC gene encodes the histidine-rich calcium-binding protein, which is found in the lumen of the junctional sarcoplasmic reticulum (SR) of cardiac and skeletal muscle and within calciosomes of arterial smooth muscle. The expression of HRC in cardiac, skeletal, and smooth muscle raises the possibility of a common transcriptional mechanism governing its expression in all three muscle cell types. In this study, we identified a transcriptional enhancer from the HRC gene that is sufficient to direct the expression of lacZ in the expression pattern of endogenous HRC in transgenic mice. The HRC enhancer contains a small, highly conserved sequence that is required for expression in all three muscle lineages. Within this conserved region is a consensus site for myocyte enhancer factor 2 (MEF2) proteins that we show is bound efficiently by MEF2 and is required for transgene expression in all three muscle lineages in vivo. Furthermore, the entire HRC enhancer sequence lacks any discernible CArG motifs, the binding site for serum response factor (SRF), and we show that the enhancer is not activated by SRF. Thus, these studies identify the HRC enhancer as the first MEF2-dependent, CArG-independent transcriptional target in smooth muscle and represent the first analysis of the transcriptional regulation of an SR gene in vivo.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Músculo Esquelético/embriología , Músculo Liso Vascular/embriología , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Genes Reporteros , Corazón/fisiología , Humanos , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Músculo Liso Vascular/fisiología , Factores Reguladores Miogénicos , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/genética , Transcripción Genética
3.
Mech Dev ; 120(9): 1021-32, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14550531

RESUMEN

Skeletal muscle development requires the coordinated expression of numerous transcription factors to control the specification of mesodermal progenitor cells to a muscle fate and the differentiation of those committed myoblasts into functional, contractile muscle. Two families of transcription factors play key roles in these processes. The myogenic basic helix-loop-helix (bHLH) proteins, MyoD and Myf5, are required for myoblast specification, while two members of the same family, myogenin and MRF4, play key roles in myoblast differentiation in vivo. All four members of the myogenic bHLH family are sufficient to dominantly induce myogenesis when introduced into a variety of non-muscle cells in culture, however this function requires the activity of a second family of transcriptional regulators, the myocyte enhancer factor 2 (MEF2) family. MEF2 factors are essential for muscle differentiation, and previous studies have shown that MyoD and MEF2 family members function combinatorially to activate transcription and myogenesis. Consistent with these observations, the majority of skeletal muscle genes require both MyoD and MEF2 family members to activate their transcription. A possible exception to this combinatorial model for activation is suggested by the observation that myogenic bHLH factors may be able to independently activate the expression of MEF2. This raises the question as to how mef2 gene transcription is induced by MyoD factors without cooperative activation by MEF2. During skeletal muscle development, mef2c is the first member of the MEF2 family to be expressed. In this study, we have investigated the regulation of a skeletal muscle-specific enhancer from the mouse mef2c gene using a transgenic approach. We show that mef2c is a direct transcriptional target of the MyoD family in vivo via an essential E box in the skeletal muscle enhancer of mef2c, and we show that mef2c is not a direct target for autoregulation by MEF2.


Asunto(s)
Músculo Esquelético/embriología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/fisiología , Animales , Secuencia de Bases , Secuencia Conservada , ADN/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteína MioD/genética , Proteína MioD/fisiología , Homología de Secuencia de Ácido Nucleico , Activación Transcripcional
4.
Dev Biol ; 287(1): 134-45, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16188249

RESUMEN

The vertebrate heart arises from the fusion of bilateral regions of anterior mesoderm to form a linear heart tube. Recent studies in mouse and chick have demonstrated that a second cardiac progenitor population, known as the anterior or secondary heart field, is progressively added to the heart at the time of cardiac looping. While it is clear that this second field contributes to the myocardium, its precise boundaries, other lineages derived from this population, and its contributions to the postnatal heart remain unclear. In this study, we used regulatory elements from the mouse mef2c gene to direct the expression of Cre recombinase exclusively in the anterior heart field and its derivatives in transgenic mice. By crossing these mice, termed mef2c-AHF-Cre, to Cre-dependent lacZ reporter mice, we generated a fate map of the embryonic, fetal, and postnatal heart. These studies show that the endothelial and myocardial components of the outflow tract, right ventricle, and ventricular septum are derivatives of mef2c-AHF-Cre expressing cells within the anterior heart field and its derivatives. These studies also show that the atria, epicardium, coronary vessels, and the majority of outflow tract smooth muscle are not derived from this anterior heart field population. Furthermore, a transgene marker specific for the anterior heart field is expressed in the common ventricular chamber in mef2c mutant mice, suggesting that the cardiac looping defect in these mice is not due to a failure in anterior heart field addition to the heart. Finally, the Cre transgenic mice described here will be a crucial tool for conditional gene inactivation exclusively in the anterior heart field and its derivatives.


Asunto(s)
Tabiques Cardíacos/embriología , Corazón/embriología , Animales , Biomarcadores , Vasos Coronarios/embriología , Femenino , Corazón/fisiología , Tabiques Cardíacos/fisiología , Ventrículos Cardíacos/embriología , Integrasas , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Liso/embriología , Factores Reguladores Miogénicos/genética , Pericardio/embriología
5.
Zebrafish ; 1(3): 239-56, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-18248235

RESUMEN

The neuroectoderm arises during gastrulation as a population of undifferentiated proliferating neuroepithelial cells. As development continues, neuroepithelial cells leave the cell cycle and differentiate into neurons and glia of the functioning central nervous system. What processes establish the spatial distribution of proliferating neuroepithelial cells? To investigate this question, zic2a was isolated from zebrafish, a homolog of the Drosophila pair-rule gene odd-paired, which is involved in nervous system patterning. At shield stage, zic2a was expressed in the zebrafish organizer and the blastoderm margin, and became restricted to the axial mesoderm in mid-gastrula. Expression of zic2a appeared in the prospective neuroectoderm during gastrulation, and later demarcated the presumptive forebrain. This expression pattern suggests that zic2a may function early in the organizer and later in the neural plate to demarcate the population of proliferating neuroectoderm. Consistent with a function for zic2a in transducing signals from the organizer, overexpression of zic2a resulted in an expansion of proliferating neuroectoderm. Furthermore, zic2a overexpression rescued the ventralized phenotype of chordino mutant embryos, which lack a functional chordin gene. Early expression of zic2 in the zebrafish organizer, and the phenotype resulting from overexpression, show a role for zic2a downstream of chordin or other secreted organizer proteins in establishing the initial size of the population of neuroectoderm cells.

6.
Development ; 131(16): 3931-42, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15253934

RESUMEN

The vertebrate heart forms initially as a linear tube derived from a primary heart field in the lateral mesoderm. Recent studies in mouse and chick have demonstrated that the outflow tract and right ventricle originate from a separate source of mesoderm that is anterior to the primary heart field. The discovery of this anterior, or secondary, heart field has led to a greater understanding of the morphogenetic events involved in heart formation; however, many of the underlying molecular events controlling these processes remain to be determined. The MADS domain transcription factor MEF2C is required for proper formation of the cardiac outflow tract and right ventricle, suggesting a key role in anterior heart field development. Therefore, as a first step toward identifying the transcriptional pathways upstream of MEF2C, we introduced a lacZ reporter gene into a bacterial artificial chromosome (BAC) encompassing the murine Mef2c locus and used this recombinant to generate transgenic mice. This BAC transgene was sufficient to recapitulate endogenous Mef2c expression, and comparative sequence analyses revealed multiple regions of significant conservation in the noncoding regions of the BAC. We show that one of these conserved noncoding regions represents a transcriptional enhancer that is sufficient to direct expression of lacZ exclusively to the anterior heart field throughout embryonic development. This conserved enhancer contains two consensus GATA binding sites that are efficiently bound by the zinc finger transcription factor GATA4 and are completely required for enhancer function in vivo. This enhancer also contains two perfect consensus sites for the LIM-homeodomain protein ISL1. We show that these elements are specifically bound by ISL1 and are essential for enhancer function in transgenic embryos. Thus, these findings establish Mef2c as the first direct transcriptional target of ISL1 in the anterior heart field and support a model in which GATA factors and ISL1 serve as the earliest transcriptional regulators controlling outflow tract and right ventricle development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Proteínas de Homeodominio/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Elementos de Facilitación Genéticos , Factor de Transcripción GATA4 , Genes Reporteros , Intrones , Proteínas con Homeodominio LIM , Factores de Transcripción MEF2 , Ratones , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/genética , Alineación de Secuencia
7.
Dev Biol ; 249(1): 174-90, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12217327

RESUMEN

Members of the basic helix-loop-helix (bHLH) transcription factor family play an essential role in multiple developmental processes. During neurogenesis, positive and negative regulation by bHLH proteins is essential for proper development. Here we report the identification and initial characterization of the bHLH gene, Neuronal twist (N-twist), named for its neural expression pattern and high sequence homology and physical linkage to the mesodermal inhibitor, M-twist. N-twist is expressed in the developing mouse central nervous system in the midbrain, hindbrain, and neural tube. This neural expression is conserved in invertebrates, as expression of the Drosophila ortholog of N-twist is also restricted to the central nervous system. Like other bHLH family members, N-Twist heterodimerizes with E protein and binds DNA at a consensus bHLH-binding site, the E box. We show that N-Twist inhibits MASH1-dependent transcriptional activation by sequestering E protein in a dominant negative fashion. Thus, these studies support the notion that N-Twist represents a novel negative regulator of neurogenesis.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores Reguladores Miogénicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sistema Nervioso Central/crecimiento & desarrollo , Clonación Molecular , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Drosophila/genética , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Secuencias Hélice-Asa-Hélice , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso , Proteínas Nucleares/genética , Proteínas Represoras , Factores de Transcripción TCF , Proteína 1 Similar al Factor de Transcripción 7 , Transcripción Genética , Proteína 1 Relacionada con Twist
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA