Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; : e2403560, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212623

RESUMEN

Drug toxicity assays using conventional 2D static cultures and animal studies have limitations preventing the translation of potential drugs to the clinic. The recent development of organs-on-a-chip platforms provides promising alternatives for drug toxicity/screening assays. However, most studies conducted with these platforms only utilize single endpoint results, which do not provide real-time/ near real-time information. Here, a versatile technology is presented that integrates a 3D liver-on-a-chip with a label-free photonic crystal-total internal reflection (PC-TIR) biosensor for rapid and continuous monitoring of the status of cells. This technology can detect drug-induced liver toxicity by continuously monitoring the secretion rates and levels of albumin and glutathione S-transferase α (GST-α) of a 3D liver on-a-chip model treated with Doxorubicin. The PC-TIR biosensor is based on a one-step antibody functionalization with high specificity and a detection range of 21.7 ng mL-1 to 7.83 x 103 ng mL-1 for albumin and 2.20 ng mL-1 to 7.94 x 102 ng mL-1 for GST-α. This approach provides critical advantages for the early detection of drug toxicity and improved temporal resolution to capture transient drug effects. The proposed proof-of-concept study introduces a scalable and efficient plug-in solution for organ-on-a-chip technologies, advancing drug development and in vitro testing methods by enabling timely and accurate toxicity assessments.

2.
Adv Funct Mater ; 33(9)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-37090954

RESUMEN

Adhesive materials have recently drawn intensive attention due to their excellent sealing ability, thereby stimulating advances in materials science and industrial usage. However, reported adhesives usually exhibit weak adhesion strength, require high pressure for strong bonding, and display severe adhesion deterioration in various harsh environments. In this work, instead of water or organic solvents, a deep eutectic solution (DES) was used as the medium for photopolymerization of zwitterionic and polarized monomers, thus generating a novel ionogel with tunable mechanical properties. Multiple hydrogen bonds and electrostatic interactions between DES and monomers facilitated ultrafast gelation and instant bonding without any external pressure, which was rarely reported previously. Furthermore, high adhesion in different harsh environments (e.g., water, acidic and basic buffers, and saline solutions) and onto hydrophilic (e.g., glass and tissues) and hydrophobic (e.g., polymethyl methacrylate, polystyrene, and polypropylene) adherends was demonstrated. Also, high stretchability of the ionogel at extreme temperatures (-80 and 80 °C) indicated its widespread applications. Furthermore, the biocompatible ionogel showed high burst pressure onto stomach and intestine tissues to prevent liquid leakage, highlighting its potential as an adhesive patch. This ionogel provides unprecedented opportunities in the fields of packaging industry, marine engineering, medical adhesives, and electronic assembly.

3.
Biomed Microdevices ; 25(4): 37, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740819

RESUMEN

Trans-endothelial electrical resistance (TEER) is one of the most widely used indicators to quantify the barrier integrity of endothelial layers. Over the last decade, the integration of TEER sensors into organ-on-a-chip (OOC) platforms has gained increasing interest for its efficient and effective measurement of TEER in OOCs. To date, microfabricated electrodes or direct insertion of wires has been used to integrate TEER sensors into OOCs, with each method having advantages and disadvantages. In this study, we developed a TEER-SPE chip consisting of carbon-based screen-printed electrodes (SPEs) embedded in a poly(methyl methacrylate) (PMMA)-based multi-layered microfluidic device with a porous poly(ethylene terephthalate) membrane in-between. As proof of concept, we demonstrated the successful cultures of hCMEC/D3 cells and the formation of confluent monolayers in the TEER-SPE chip and obtained TEER measurements for 4 days. Additionally, the TEER-SPE chip could detect changes in the barrier integrity due to shear stress or an inflammatory cytokine (i.e., tumor necrosis factor-α). The novel approach enables a low-cost and facile fabrication of carbon-based SPEs on PMMA substrates and the subsequent assembly of PMMA layers for rapid prototyping. Being cost-effective and cleanroom-free, our method lowers the existing logistical and technical barriers presenting itself as another step forward to the broader adoption of OOCs with TEER measurement capability.


Asunto(s)
Sistemas Microfisiológicos , Polimetil Metacrilato , Impedancia Eléctrica , Carbono , Electrodos
4.
Small ; 18(39): e2201401, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978444

RESUMEN

The human brain and central nervous system (CNS) present unique challenges in drug development for neurological diseases. One major obstacle is the blood-brain barrier (BBB), which hampers the effective delivery of therapeutic molecules into the brain while protecting it from blood-born neurotoxic substances and maintaining CNS homeostasis. For BBB research, traditional in vitro models rely upon Petri dishes or Transwell systems. However, these static models lack essential microenvironmental factors such as shear stress and proper cell-cell interactions. To this end, organ-on-a-chip (OoC) technology has emerged as a new in vitro modeling approach to better recapitulate the highly dynamic in vivo human brain microenvironment so-called the neural vascular unit (NVU). Such BBB-on-a-chip models have made substantial progress over the last decade, and concurrently there has been increasing interest in modeling various neurological diseases such as Alzheimer's disease and Parkinson's disease using OoC technology. In addition, with recent advances in other scientific technologies, several new opportunities to improve the BBB-on-a-chip platform via multidisciplinary approaches are available. In this review, an overview of the NVU and OoC technology is provided, recent progress and applications of BBB-on-a-chip for personalized medicine and drug discovery are discussed, and current challenges and future directions are delineated.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Transporte Biológico , Encéfalo , Humanos , Dispositivos Laboratorio en un Chip
5.
Artif Organs ; 46(7): E211-E243, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35349178

RESUMEN

BACKGROUND: Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS: In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS: These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS: This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Microtecnología , Impresión Tridimensional , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Small ; 17(15): e2004258, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33094918

RESUMEN

Cardiotoxicity is one of the most serious side effects of cancer chemotherapy. Current approaches to monitoring of chemotherapy-induced cardiotoxicity (CIC) as well as model systems that develop in vivo or in vitro CIC platforms fail to notice early signs of CIC. Moreover, breast cancer (BC) patients with preexisting cardiac dysfunctions may lead to different incident levels of CIC. Here, a model is presented for investigating CIC where not only induced pluripotent stem cell (iPSC)-derived cardiac tissues are interacted with BC tissues on a dual-organ platform, but electrochemical immuno-aptasensors can also monitor cell-secreted multiple biomarkers. Fibrotic stages of iPSC-derived cardiac tissues are promoted with a supplement of transforming growth factor-ß 1 to assess the differential functionality in healthy and fibrotic cardiac tissues after treatment with doxorubicin (DOX). The production trend of biomarkers evaluated by using the immuno-aptasensors well-matches the outcomes from conventional enzyme-linked immunosorbent assay, demonstrating the accuracy of the authors' sensing platform with much higher sensitivity and lower detection limits for early monitoring of CIC and BC progression. Furthermore, the versatility of this platform is demonstrated by applying a nanoparticle-based DOX-delivery system. The proposed platform would potentially help allow early detection and prediction of CIC in individual patients in the future.


Asunto(s)
Neoplasias de la Mama , Cardiotoxicidad , Neoplasias de la Mama/tratamiento farmacológico , Cardiotoxicidad/diagnóstico , Cardiotoxicidad/etiología , Doxorrubicina/efectos adversos , Femenino , Corazón , Humanos , Dispositivos Laboratorio en un Chip , Miocitos Cardíacos
7.
Small ; 16(16): e1905910, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32101371

RESUMEN

The extraction of interstitial fluid (ISF) from skin using microneedles (MNs) has attracted growing interest in recent years due to its potential for minimally invasive diagnostics and biosensors. ISF collection by absorption into a hydrogel MN patch is a promising way that requires the materials to have outstanding swelling ability. Here, a gelatin methacryloyl (GelMA) patch is developed with an 11 × 11 array of MNs for minimally invasive sampling of ISF. The properties of the patch can be tuned by altering the concentration of the GelMA prepolymer and the crosslinking time; patches are created with swelling ratios between 293% and 423% and compressive moduli between 3.34 MPa and 7.23 MPa. The optimized GelMA MN patch demonstrates efficient extraction of ISF. Furthermore, it efficiently and quantitatively detects glucose and vancomycin in ISF in an in vivo study. This minimally invasive approach of extracting ISF with a GelMA MN patch has the potential to complement blood sampling for the monitoring of target molecules from patients.


Asunto(s)
Líquido Extracelular , Gelatina , Hidrogeles , Agujas/clasificación , Piel , Humanos
8.
Small ; 16(25): e2001837, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32419312

RESUMEN

Stem cells secrete trophic factors that induce angiogenesis. These soluble factors are promising candidates for stem cell-based therapies, especially for cardiovascular diseases. Mechanical stimuli and biophysical factors presented in the stem cell microenvironment play important roles in guiding their behaviors. However, the complex interplay and precise role of these cues in directing pro-angiogenic signaling remain unclear. Here, a platform is designed using gelatin methacryloyl hydrogels with tunable rigidity and a dynamic mechanical compression bioreactor to evaluate the influence of matrix rigidity and mechanical stimuli on the secretion of pro-angiogenic factors from human mesenchymal stem cells (hMSCs). Cells cultured in matrices mimicking mechanical elasticity of bone tissues in vivo show elevated secretion of vascular endothelial growth factor (VEGF), one of representative signaling proteins promoting angiogenesis, as well as increased vascularization of human umbilical vein endothelial cells (HUVECs) with a supplement of conditioned media from hMSCs cultured across different conditions. When hMSCs are cultured in matrices stimulated with a range of cyclic compressions, increased VEGF secretion is observed with increasing mechanical strains, which is also in line with the enhanced tubulogenesis of HUVECs. Moreover, it is demonstrated that matrix stiffness and cyclic compression modulate secretion of pro-angiogenic molecules from hMSCs through yes-associated protein activity.


Asunto(s)
Células Madre Mesenquimatosas , Células Cultivadas , Señales (Psicología) , Medios de Cultivo Condicionados , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular
9.
Proc Natl Acad Sci U S A ; 114(12): E2293-E2302, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265064

RESUMEN

Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.


Asunto(s)
Automatización/métodos , Técnicas Biosensibles/métodos , Evaluación Preclínica de Medicamentos/métodos , Organoides/fisiología , Automatización/instrumentación , Técnicas Biosensibles/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Corazón/fisiología , Humanos , Hígado/química , Hígado/fisiología , Microfluídica , Modelos Biológicos , Miocardio , Organoides/química , Organoides/efectos de los fármacos
10.
Small ; 15(15): e1900300, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30884183

RESUMEN

Cells secrete substances that are essential to the understanding of numerous immunological phenomena and are extensively used in clinical diagnoses. Countless techniques for screening of biomarker secretion in living cells have generated valuable information on cell function and physiology, but low volume and real-time analysis is a bottleneck for a range of approaches. Here, a simple, highly sensitive assay using a high-throughput micropillar and microwell array chip (MIMIC) platform is presented for monitoring of biomarkers secreted by cancer cells. The sensing element is a micropillar array that uses the enzyme-linked immunosorbent assay (ELISA) mechanism to detect captured biomolecules. When integrated with a microwell array where few cells are localized, interleukin 8 (IL-8) secretion can be monitored with nanoliter volume using multiple micropillar arrays. The trend of cell secretions measured using MIMICs matches the results from conventional ELISA well while it requires orders of magnitude less cells and volumes. Moreover, the proposed MIMIC is examined to be used as a drug screening platform by delivering drugs using micropillar arrays in combination with a microfluidic system and then detecting biomolecules from cells as exposed to drugs.


Asunto(s)
Biomarcadores/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Microtecnología/métodos , Animales , Anticuerpos/análisis , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Ratones
11.
Small ; 15(24): e1805530, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31012262

RESUMEN

Skeletal muscle tissue engineering (SMTE) aims at repairing defective skeletal muscles. Until now, numerous developments are made in SMTE; however, it is still challenging to recapitulate the complexity of muscles with current methods of fabrication. Here, after a brief description of the anatomy of skeletal muscle and a short state-of-the-art on developments made in SMTE with "conventional methods," the use of 3D bioprinting as a new tool for SMTE is in focus. The current bioprinting methods are discussed, and an overview of the bioink formulations and properties used in 3D bioprinting is provided. Finally, different advances made in SMTE by 3D bioprinting are highlighted, and future needs and a short perspective are provided.


Asunto(s)
Bioimpresión/métodos , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Bioimpresión/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Humanos , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
12.
Biomed Microdevices ; 21(2): 42, 2019 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955134

RESUMEN

Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.


Asunto(s)
Bioimpresión/métodos , Impresión Tridimensional/instrumentación , Medicina Regenerativa , Bioimpresión/instrumentación , Diseño de Equipo
13.
Small ; 13(15)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28211642

RESUMEN

Organ-on-a-chip platforms seek to recapitulate the complex microenvironment of human organs using miniaturized microfluidic devices. Besides modeling healthy organs, these devices have been used to model diseases, yielding new insights into pathophysiology. Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease showing accelerated vascular aging, leading to the death of patients due to cardiovascular diseases. HGPS targets primarily vascular cells, which reside in mechanically active tissues. Here, a progeria-on-a-chip model is developed and the effects of biomechanical strain are examined in the context of vascular aging and disease. Physiological strain induces a contractile phenotype in primary smooth muscle cells (SMCs), while a pathological strain induces a hypertensive phenotype similar to that of angiotensin II treatment. Interestingly, SMCs derived from human induced pluripotent stem cells of HGPS donors (HGPS iPS-SMCs), but not from healthy donors, show an exacerbated inflammatory response to strain. In particular, increased levels of inflammation markers as well as DNA damage are observed. Pharmacological intervention reverses the strain-induced damage by shifting gene expression profile away from inflammation. The progeria-on-a-chip is a relevant platform to study biomechanics in vascular biology, particularly in the setting of vascular disease and aging, while simultaneously facilitating the discovery of new drugs and/or therapeutic targets.


Asunto(s)
Progresión de la Enfermedad , Inflamación/patología , Dispositivos Laboratorio en un Chip , Progeria/fisiopatología , Angiotensina II/farmacología , Fenómenos Biomecánicos , Vasos Sanguíneos/patología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lovastatina/farmacología , Microfluídica , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fenotipo
14.
Small ; 12(16): 2130-45, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27101419

RESUMEN

Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Nanotecnología/métodos , Ingeniería de Tejidos/métodos , Biotina/química , Microambiente Celular , ADN/química , Geles , Humanos , Hidrogeles/química , Cinética , Microfluídica , Microscopía Electrónica de Rastreo , Nanotecnología/tendencias , Factor de Crecimiento Derivado de Plaquetas/química , Regeneración , Electricidad Estática , Estreptavidina/química , Temperatura , Ingeniería de Tejidos/tendencias , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/química , Viscosidad
16.
Lab Chip ; 24(8): 2358-2359, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501991

RESUMEN

Correction for 'Integrated biosensors for monitoring microphysiological systems' by Lei Mou et al., Lab Chip, 2022, 22, 3801-3816, https://doi.org/10.1039/D2LC00262K.

17.
Adv Healthc Mater ; 13(21): e2302331, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38359321

RESUMEN

Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.


Asunto(s)
Neoplasias , Organoides , Humanos , Organoides/efectos de los fármacos , Organoides/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Medicina de Precisión/métodos , Dispositivos Laboratorio en un Chip , Ensayos de Selección de Medicamentos Antitumorales/métodos
18.
ACS Sens ; 9(5): 2334-2345, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639453

RESUMEN

Noninvasive monitoring of biofabricated tissues during the biomanufacturing process is needed to obtain reproducible, healthy, and functional tissues. Measuring the levels of biomarkers secreted from tissues is a promising strategy to understand the status of tissues during biofabrication. Continuous and real-time information from cultivated tissues enables users to achieve scalable manufacturing. Label-free biosensors are promising candidates for detecting cell secretomes since they can be noninvasive and do not require labor-intensive processes such as cell lysing. Moreover, most conventional monitoring techniques are single-use, conducted at the end of the fabrication process, and, challengingly, are not permissive to in-line and continual detection. To address these challenges, we developed a noninvasive and continual monitoring platform to evaluate the status of cells during the biofabrication process, with a particular focus on monitoring the transient processes that stem cells go through during in vitro differentiation over extended periods. We designed and evaluated a reusable electrochemical immunosensor with the capacity for detecting trace amounts of secreted osteogenic markers, such as osteopontin (OPN). The sensor has a low limit of detection (LOD), high sensitivity, and outstanding selectivity in complex biological media. We used this OPN immunosensor to continuously monitor on-chip osteogenesis of human mesenchymal stem cells (hMSCs) cultured 2D and 3D hydrogel constructs inside a microfluidic bioreactor for more than a month and were able to observe changing levels of OPN secretion during culture. The proposed platform can potentially be adopted for monitoring a variety of biological applications and further developed into a fully automated system for applications in advanced cellular biomanufacturing.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Dispositivos Laboratorio en un Chip , Osteogénesis , Humanos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Osteopontina/análisis , Osteopontina/metabolismo , Células Madre Mesenquimatosas/citología , Inmunoensayo/métodos , Inmunoensayo/instrumentación
19.
J Control Release ; 365: 744-758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072085

RESUMEN

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.


Asunto(s)
Candidiasis , Infección de Heridas , Humanos , Anfotericina B , Antifúngicos/química , Vendajes , Candida albicans , Candidiasis/tratamiento farmacológico , Látex , Pruebas de Sensibilidad Microbiana , Infección de Heridas/tratamiento farmacológico
20.
Macromol Biosci ; 23(1): e2200333, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36287084

RESUMEN

Shear-thinning biomaterials (STBs) based on gelatin-silicate nanoplatelets (SNs) are emerging as an alternative to conventional coiling and clipping techniques in the treatment of vascular anomalies. Improvements in the cohesion of STB hydrogels pave the way toward their translational application in minimally invasive therapies such as endovascular embolization repair. In the present study, sodium phytate (Phyt) additives are used to tune the electrostatic network of SNs-gelatin STBs, thereby promoting their mechanical integrity and facilitating injectability through standard catheters. We show that an optimized amount of Phyt enhances storage modulus by approximately one order of magnitude and reduces injection force by ≈58% without compromising biocompatibility and hydrogel wet stability. The Phyt additives are found to decrease the immune responses induced by SNs. In vitro embolization experiments suggest a significantly lower rate of failure in Phyt-incorporated STBs than in control groups. Furthermore, the addition of Phyt leads to accelerated blood coagulation (reduces clotting time by ≈45% compared to controls) due to the contributions of negatively charged phosphate groups, which aid in the prolonged durability of STB in coagulopathic patients. Therefore, the proposed approach is an effective method for the design of robust and injectable STBs for minimally invasive treatment of vascular malformations.


Asunto(s)
Materiales Biocompatibles , Hemostáticos , Humanos , Materiales Biocompatibles/farmacología , Gelatina/farmacología , Ácido Fítico , Silicatos/farmacología , Hidrogeles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA