Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Fish Shellfish Immunol ; 80: 655-659, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29935340

RESUMEN

When fish perceive stressful scenarios, their hypothalamus-pituitary-interrenal axis is activated resulting in the release of corticotropin releasing hormone, adrenocorticotropic hormone (ACTH), and finally cortisol. The physiologic stress response of fish has most often been linked to the reduced performance of the immune system, with a few exceptions where the immune system is activated. In this report, we tested the hypothesis that oxidative burst activity levels in juvenile Chinook salmon (Oncorhynchus tshawytscha) are altered when the fish is presented with a stressor. Fish were subjected to a stressor for 3 h and then allowed to recover for 20 h following the stressor. Plasma and spleens were collected from euthanized fish before the stressor, at the end of a 3 h stressor, and 23 h after the start of the experiment. Plasma was held at -80 °C until cortisol radioimmunoassay analysis was performed to confirm stress. Spleens were held in Dulbecco's Modified Eagle Medium overnight and analyzed the day following collection. Oxidative burst activity was measured in splenic leukocytes after being stimulated with phorbol 12-myristate 13-acetate. We found a significant increase in activated oxidative burst from fish subjected to the stressor as compared to unstressed fish. Speculation is given to ACTH being the leukocyte priming agent in this experiment rather than the cortisol itself.


Asunto(s)
Leucocitos/metabolismo , Salmón/metabolismo , Estrés Fisiológico , Animales , Hidrocortisona/sangre , Estallido Respiratorio , Salmón/sangre
2.
Parasite Immunol ; 37(5): 255-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25354672

RESUMEN

In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: many components of environmental change--shifts in biotic assemblages, altered climate patterns and reduced environmental predictability--may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding the patterns of immunity and infection in natural populations and across species.


Asunto(s)
Infecciones/veterinaria , Mamíferos/clasificación , Mamíferos/inmunología , Animales , Conducta Animal , Ecosistema , Interacción Gen-Ambiente , Infecciones/inmunología , Mamíferos/fisiología
3.
Int J Parasitol Parasites Wildl ; 9: 25-35, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30976514

RESUMEN

Within-host competition can affect outcomes of infections when parasites occupy the same niche. We investigated within-host competition and infection outcomes in Chinook salmon exposed to two genotypes of Ceratonova shasta (myxozoan parasite). We assessed i) virulence (host mortality, median days to death), ii) within-host competition (abundance in host), and iii) success (spore production, proportion of myxospore-producing hosts) following concurrent and sequential exposures to single or mixed-genotype treatments. In single treatments, genotype-I replicated faster, and caused higher and earlier host mortality (higher virulence) but genotype-II produced more myxospores (higher success). In mixed treatments, costs of competition were observed for both genotypes evidenced by reduced replication or myxospore production following concurrent exposures, but only the less-virulent genotype suffered costs of competition when hosts were exposed to genotypes sequentially. To understand potential host effects on competition outcomes, we characterized systemic (spleen) and local (intestine) cytokine and immunoglobulin expression in single and mixed infections. We observed delayed systemic and immunosuppressive responses to the virulent genotype (I), rapid, localized and non-suppressive responses to the less-virulent genotype (II), and a combination of responses to mixed-genotypes. Thus, competition outcomes favoring the virulent genotype may be partially explained by the localized response to genotype-II that facilitates myxospore production (success) offsetting the systemic response to genotype-I that results in early inflammation and immunosuppression (that increases onset of mortality). This evidence for different but simultaneous responses to each genotype suggests selection should favor the exclusion of the weaker competitor and the evolution of increased virulence in the stronger competitor because the outcome was generally more costly for the less-virulent genotype. With caveats, our results are relevant for understanding infection outcomes in commercially and ecologically important salmonids in C. shasta endemic regions where mixed infections are commonplace.

4.
J Anim Sci ; 95(6): 2408-2420, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28727057

RESUMEN

In newborn dairy calves, it has been demonstrated that supranutritional maternal and colostral Se supplementation using Se yeast or sodium selenite, respectively, improves passive transfer of IgG. In beef cattle, agronomic biofortification with Se is a more practical alternative for Se supplementation, whereby the Se concentration of hay is increased through the use of Se-containing fertilizer amendments. It has been previously demonstrated that agronomic Se biofortification is an effective strategy to improve immunity and performance in Se-replete weaned beef calves. The objective of this experiment was to determine the effects of feeding beef cows Se-enriched alfalfa () hay during the last 8 to 12 wk of gestation on passive transfer of antibodies to calves. At 10 wk ± 16 d before calving, 45 cows were assigned to 1 of 3 treatment groups with 3 pens (5 cows/pen) per treatment: Control cows were fed non-Se-fortified alfalfa hay plus a mineral supplement containing 120 mg/kg Se from sodium selenite, Med-Se cows were fed alfalfa hay fertilized with 45.0 g Se/ha as sodium selenate, and High-Se cows were fed alfalfa hay fertilized with 89.9 g Se/ha as sodium selenate; both the Med-Se and the High-Se groups received mineral supplement without added Se. Colostrum and whole blood (WB) were collected from cows at calving, and WB was collected from calves within 2 h of calving and at 12, 24, 36, and 48 h of age. Concentrations of IgG1 and J-5 antibody in cow colostrum and calf serum were quantified using ELISA procedures. Selenium concentrations linearly increased in WB ( < 0.001) and colostrum ( < 0.001) of cows and in WB of newborn calves ( < 0.001) with increasing Se concentration in alfalfa hay. Colostrum concentrations of IgG1 ( = 0.03) were increased in cows fed Se-biofortified alfalfa hay, but J-5 antibody ( = 0.43) concentrations were not. Calf serum IgG1 ( = 0.43) and J-5 antibody ( = 0.44) concentrations during the first 48 h of age were not affected by prior Se treatment of cows. These data suggest that feeding Se-biofortified alfalfa hay promotes the accumulation of Se and antibodies in colostrum but does not affect short-term serum antibody concentrations in calves.


Asunto(s)
Animales Recién Nacidos/metabolismo , Bovinos/fisiología , Calostro/inmunología , Suplementos Dietéticos , Inmunización Pasiva , Selenio/administración & dosificación , Alimentación Animal , Animales , Animales Recién Nacidos/inmunología , Bovinos/inmunología , Bovinos/metabolismo , Calostro/química , Femenino , Inmunoglobulina G/sangre , Medicago sativa , Embarazo , Carne Roja/normas , Selenio/sangre , Selenio/metabolismo , Selenito de Sodio/administración & dosificación , Levadura Seca
5.
J Phys Condens Matter ; 24(40): 405801, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22968970

RESUMEN

We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.


Asunto(s)
Arsenicales/química , Galio/química , Gases/química , Modelos Químicos , Reología/métodos , Simulación por Computador , Transporte de Electrón , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA