Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Thromb Thrombolysis ; 51(4): 884-889, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33079380

RESUMEN

One of the major mechanisms of action of chemo-radiation is to induce cellular senescence, which exerts crucial roles in age-related pathology. The concept of senescence is evolved, and the novel understanding of senescence-associated reprogramming/stemness has emerged. This new concept emphasizes senescence as not only cell cycle arrest but describes that subsets of senescent cells induced by chemotherapy can re-enter cell cycles, proliferate rapidly, and acquire "stemness" status. Cancer therapeutics, including chemo-radiation triggers toxicity effects through damaging mitochondria, primarily through the upregulation of mtROS production leading to subsequent mtDNA and telomeric DNA damage elicitng DNA damage responses (DDR). The ultimate goal of this review is to highlight the new concept of senescence-associated stemness that is induced by cancer treatment and its adverse effects on the vascular system. We will describe how chemo-radiation exerts toxicity effects by simultaneously producing reactive oxygen species in mitochondria and promoting DDR in the nucleus. We discuss the potential of clinical targeting poly (ADP-ribose) polymerase which might prevent downstream mitochondrial dysfunction and confer protection to cancer survivors. Overall we emphasize the importance of recognizing the consequences of cardio-toxic effects of several cancer treatments and therefore developing personalized therapeutic approaches to screen for inflammatory and cardiac testing for better patient survival.


Asunto(s)
Mitocondrias , Neoplasias , Senescencia Celular , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno
2.
Nat Rev Urol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627553

RESUMEN

Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.

3.
Matter ; 6(10): 3608-3630, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37937235

RESUMEN

The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how the nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus within aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments, but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments.

4.
Front Cardiovasc Med ; 10: 1213428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264262

RESUMEN

Background: Traf2 and Nck-interacting kinase (TNIK) is known for its regulatory role in various processes within cancer cells. However, its role within endothelial cells (ECs) has remained relatively unexplored. Methods: Leveraging RNA-seq data and Ingenuity Pathway Analysis (IPA), we probed the potential impact of TNIK depletion on ECs. Results: Examination of RNA-seq data uncovered more than 450 Differentially Expressed Genes (DEGs) in TNIK-depleted ECs, displaying a fold change exceeding 2 with a false discovery rate (FDR) below 0.05. IPA analysis unveiled that TNIK depletion leads to the inhibition of the interferon (IFN) pathway [-log (p-value) >11], downregulation of IFN-related genes, and inhibition of Hypercytokinemia/Hyperchemokinemia [-log (p-value) >8]. The validation process encompassed qRT-PCR to evaluate mRNA expression of crucial IFN-related genes, immunoblotting to gauge STAT1 and STAT2 protein levels, and ELISA for the quantification of IFN and cytokine secretion in siTNIK-depleted ECs. These assessments consistently revealed substantial reductions upon TNIK depletion. When transducing HUVECs with replication incompetent E1-E4 deleted adenovirus expressing green fluorescent protein (Ad-GFP), it was demonstrated that TNIK depletion did not affect the uptake of Ad-GFP. Nonetheless, TNIK depletion induced cytopathic effects (CPE) in ECs transduced with wild-type human adenovirus serotype 5 (Ad-WT). Summary: Our findings suggest that TNIK plays a crucial role in regulating the EC response to virus infections through modulation of the IFN pathway.

5.
Antioxid Redox Signal ; 36(10-12): 784-796, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34538111

RESUMEN

Significance: Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory cytokines interleukin (IL)-1ß and IL-18 as well as inflammatory cell death (pyroptosis). Among known inflammasomes, NLRP3 (NLR family pyrin domain containing 3) inflammasome is unique and well studied owing to the fact that it senses a broad range of stimuli and is implicated in the pathogenesis of both microbial and sterile inflammatory diseases. Recent Advances: Reactive oxygen species (ROS), especially derived from the mitochondria, are one of the critical mediators of NLRP3 inflammasome activation. Furthermore, NLRP3 inflammasome-driven inflammation recruits inflammatory cells, including macrophages and neutrophils, which in turn cause ROS production, suggesting a feedback loop between ROS and NLRP3 inflammasome. Critical Issues: The precise mechanism of how ROS affects NLRP3 inflammasome activation still need to be addressed. This review will summarize the current knowledge on the molecular mechanisms underlying the activation of NLRP3 inflammasome with particular emphasis on the intricate balance of feedback loop between ROS and inflammasome activation. Future Directions: Understanding that this relationship is loop rather than traditionally understood linear mechanism will enable to fine-tune inflammasome activation under varied pathological settings. Antioxid. Redox Signal. 36, 784-796.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Especies Reactivas de Oxígeno/metabolismo
6.
Front Physiol ; 11: 605908, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519510

RESUMEN

Endothelial cells have emerged as key players in SARS-CoV-2 infection and COVID-19 inflammatory pathologies. Dysfunctional endothelial cells can promote chronic inflammation and disease processes like thrombosis, atherosclerosis, and lung injury. In endothelial cells, mitochondria regulate these inflammatory pathways via redox signaling, which is primarily achieved through mitochondrial reactive oxygen species (mtROS). Excess mtROS causes oxidative stress that can initiate and exacerbate senescence, a state that promotes inflammation and chronic endothelial dysfunction. Oxidative stress can also activate feedback loops that perpetuate mitochondrial dysfunction, mtROS overproduction, and inflammation. In this review, we provide an overview of phenotypes mediated by mtROS in endothelial cells - such as mitochondrial dysfunction, inflammation, and senescence - as well as how these chronic states may be initiated by SARS-CoV-2 infection of endothelial cells. We also propose that SARS-CoV-2 activates mtROS-mediated feedback loops that cause long-term changes in host redox status and endothelial function, promoting cardiovascular disease and lung injury after recovery from COVID-19. Finally, we discuss the implications of these proposed pathways on long-term vascular health and potential treatments to address these chronic conditions.

7.
Redox Biol ; 37: 101614, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32863187

RESUMEN

Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to "cell cycle arrest" or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.


Asunto(s)
Aterosclerosis , Senescencia Celular , Aterosclerosis/genética , Humanos , Mitocondrias , NAD
9.
Front Cardiovasc Med ; 5: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30211171

RESUMEN

Myocardial infarction (MI), which occurs often due to acute ischemia followed by reflow, is associated with irreversible loss (death) of cardiomyocytes. If left untreated, MI will lead to progressive loss of viable cardiomyocytes, deterioration of cardiac function, and congestive heart failure. While supplemental oxygen therapy has long been in practice to treat acute MI, there has not been a clear scientific basis for the observed beneficial effects. Further, there is no rationale for the amount or duration of administration of supplemental oxygenation for effective therapy. The goal of the present study was to determine an optimum oxygenation protocol that can be clinically applicable for treating acute MI. Using EPR oximetry, we studied the effect of exposure to supplemental oxygen cycling (OxCy) administered by inhalation of 21-100% oxygen for brief periods (15-90 min), daily for 5 days, using a rat model of acute MI. Myocardial oxygen tension (pO2), cardiac function and pro-survival/apoptotic signaling molecules were used as markers of treatment outcome. OxCy resulted in a significant reduction of infarct size and improvement of cardiac function. An optimal condition of 30-min OxCy with 95% oxygen + 5% CO2 under normobaric conditions was found to be effective for cardioprotection.

10.
PLoS One ; 10(5): e0124559, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25941808

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) is a multifactorial disease, where the host genetics play a significant role in determining the disease outcome. The immunological role of anti-inflammatory cytokine, Interleukin 10 (IL10), has been well-documented in parasite infections and considered as a key regulatory cytokine for VL. Although VL patients in India display high level of IL10 in blood serum, no genetic study has been conducted to assess the VL susceptibility / resistance. Therefore, the aim of this study is to investigate the role of IL10 variations in Indian VL; and to estimate the distribution of disease associated allele in diverse Indian populations. METHODOLOGY: All the exons and exon-intron boundaries of IL10 were sequenced in 184 VL patients along with 172 ethnically matched controls from VL endemic region of India. RESULT AND DISCUSSION: Our analysis revealed four variations; rs1518111 (2195 A>G, intron), rs1554286 (2607 C>T, intron), rs3024496 (4976 T>C, 3' UTR) and rs3024498 (5311 A>G, 3' UTR). Of these, a variant g.5311A is significantly associated with VL (χ2=18.87; p =0.00001). In silico approaches have shown that a putative micro RNA binding site (miR-4321) is lost in rs3024498 mRNA. Further, analysis of the above four variations in 1138 individuals from 34 ethnic populations, representing different social and linguistic groups who are inhabited in different geographical regions of India, showed variable frequency. Interestingly, we have found, majority of the tribal populations have low frequency of VL ('A' of rs3024498); and high frequency of leprosy ('T' of rs1554286), and Behcet's ('A' of rs1518111) associated alleles, whereas these were vice versa in castes. Our findings suggest that majority of tribal populations of India carry the protected / less severe allele against VL, while risk / more severe allele for leprosy and Behcet's disease. This study has potential implications in counseling and management of VL and other infectious diseases.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Interleucina-10/genética , Leishmaniasis Visceral/genética , Adolescente , Adulto , Alelos , Estudios de Casos y Controles , Niño , Exones , Femenino , Frecuencia de los Genes , Genotipo , Geografía Médica , Humanos , India/epidemiología , Intrones , Leishmaniasis Visceral/epidemiología , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA