Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Genet ; 19(11): e1011044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956214

RESUMEN

In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.


Asunto(s)
ADN Helicasas , Inestabilidad Genómica , ARN Helicasas , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Unión a Telómeros , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas Represoras/metabolismo , Puntos de Control del Ciclo Celular , Replicación del ADN
2.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34888666

RESUMEN

The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold-attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein U (HNRNPU), contributes to the formation of open chromatin structure. Here, we demonstrate that SAF-A promotes the normal progression of DNA replication and enables resumption of replication after inhibition. We report that cells depleted of SAF-A show reduced origin licensing in G1 phase and, consequently, reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted of SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated formation of phosphorylated histone H2AX (γ-H2AX) and tend to enter quiescence. Overall, we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.


Asunto(s)
Cromosomas , Replicación del ADN , Cromatina/genética , Fase G1 , Origen de Réplica/genética , Fase S/genética
3.
Genes Dev ; 28(4): 372-83, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532715

RESUMEN

Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Replicación del ADN/genética , Mutación , Fosforilación , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Temperatura
4.
Mol Cell ; 50(2): 273-80, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23499004

RESUMEN

The ring-shaped complex PCNA coordinates DNA replication, encircling DNA to act as a polymerase clamp and a sliding platform to recruit other replication proteins. PCNA is loaded onto DNA by replication factor C, but it has been unknown how PCNA is removed from DNA when Okazaki fragments are completed or the replication fork terminates. Here we show that the Elg1 replication factor C-like complex (Elg1-RLC) functions in PCNA unloading. Using an improved degron system we show that without Elg1, PCNA accumulates on Saccharomyces cerevisiae chromatin during replication. The accumulated PCNA can be removed from chromatin in vivo by switching on Elg1 expression. We find moreover that treating chromatin with purified Elg1-RLC causes PCNA unloading in vitro. Our results demonstrate that Elg1-RLC functions in unloading of both unmodified and SUMOylated PCNA during DNA replication, while the genome instability of an elg1Δ mutant suggests timely PCNA unloading is critical for chromosome maintenance.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cromatina/metabolismo , Cromosomas Fúngicos/metabolismo , ADN/metabolismo , Daño del ADN , ADN de Hongos/química , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
PLoS Genet ; 14(11): e1007783, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30418970

RESUMEN

Elg1, the major subunit of a Replication Factor C-like complex, is critical to ensure genomic stability during DNA replication, and is implicated in controlling chromatin structure. We investigated the consequences of Elg1 loss for the dynamics of chromatin re-formation following DNA replication. Measurement of Okazaki fragment length and the micrococcal nuclease sensitivity of newly replicated DNA revealed a defect in nucleosome organization in the absence of Elg1. Using a proteomic approach to identify Elg1 binding partners, we discovered that Elg1 interacts with Rtt106, a histone chaperone implicated in replication-coupled nucleosome assembly that also regulates transcription. A central role for Elg1 is the unloading of PCNA from chromatin following DNA replication, so we examined the relative importance of Rtt106 and PCNA unloading for chromatin reassembly following DNA replication. We find that the major cause of the chromatin organization defects of an ELG1 mutant is PCNA retention on DNA following replication, with Rtt106-Elg1 interaction potentially playing a contributory role.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Genes Fúngicos , Inestabilidad Genómica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteómica , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo
6.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104203

RESUMEN

Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome-wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-interaction domain, we identify hundreds of Rap1-dependent and Rap1-independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1-independent manner, associating with both early and late-initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.


Asunto(s)
Replicación del ADN/fisiología , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Sitios de Unión/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromosomas de las Plantas/química , ADN/metabolismo , Momento de Replicación del ADN/fisiología , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Mutación , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Fase S/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 46(8): 3993-4003, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29529242

RESUMEN

The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.


Asunto(s)
Proteína Fosfatasa 1/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Homeostasis del Telómero , Proteínas de Unión a Telómeros/metabolismo , Momento de Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica , Proteínas Represoras/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética
8.
EMBO Rep ; 18(3): 403-419, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28077461

RESUMEN

The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.


Asunto(s)
Replicación del ADN , Proteína Fosfatasa 1/metabolismo , Origen de Réplica , Proteínas de Unión a Telómeros/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 1/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Proteínas de Unión a Telómeros/química
9.
PLoS Genet ; 10(10): e1004691, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25329891

RESUMEN

The replication time of Saccharomyces cerevisiae telomeres responds to TG1-3 repeat length, with telomeres of normal length replicating late during S phase and short telomeres replicating early. Here we show that Tel1 kinase, which is recruited to short telomeres, specifies their early replication, because we find a tel1Δ mutant has short telomeres that nonetheless replicate late. Consistent with a role for Tel1 in driving early telomere replication, initiation at a replication origin close to an induced short telomere was reduced in tel1Δ cells, in an S phase blocked by hydroxyurea. The telomeric chromatin component Rif1 mediates late replication of normal telomeres and is a potential substrate of Tel1 phosphorylation, so we tested whether Tel1 directs early replication of short telomeres by inactivating Rif1. A strain lacking both Rif1 and Tel1 behaves like a rif1Δ mutant by replicating its telomeres early, implying that Tel1 can counteract the delaying effect of Rif1 to control telomere replication time. Proteomic analyses reveals that in yku70Δ cells that have short telomeres, Rif1 is phosphorylated at Tel1 consensus sequences (S/TQ sites), with phosphorylation of Serine-1308 being completely dependent on Tel1. Replication timing analysis of a strain mutated at these phosphorylation sites, however, suggested that Tel1-mediated phosphorylation of Rif1 is not the sole mechanism of replication timing control at telomeres. Overall, our results reveal two new functions of Tel1 at shortened telomeres: phosphorylation of Rif1, and specification of early replication by counteracting the Rif1-mediated delay in initiation at nearby replication origins.


Asunto(s)
Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Aminoácidos , Momento de Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Telómero/metabolismo , Acortamiento del Telómero , Proteínas de Unión a Telómeros/genética
11.
Methods ; 57(2): 196-202, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22465796

RESUMEN

Chromatin is dynamically regulated, and proteomic analysis of its composition can provide important information about chromatin functional components. Many DNA replication proteins for example bind chromatin at specific times during the cell cycle. Proteomic investigation can also be used to characterize changes in chromatin composition in response to perturbations such as DNA damage, while useful information is obtained by testing the effects on chromatin composition of mutations in chromosome stability pathways. We have successfully used the method of stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomic analysis of normal and pathological changes to yeast chromatin. Here we describe this proteomic method for analyzing changes to Saccharomyces cerevisiae chromatin, illustrating the procedure with an analysis of the changes that occur in chromatin composition as cells progress from a G1 phase block (induced by alpha factor) into S phase (in the presence of DNA replication inhibitor hydroxyurea).


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/aislamiento & purificación , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Hidroxiurea/farmacología , Marcaje Isotópico , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Proteoma/metabolismo , Proteómica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Esferoplastos/efectos de los fármacos , Esferoplastos/genética , Esferoplastos/metabolismo , Espectrometría de Masas en Tándem
12.
Mol Cell Proteomics ; 10(7): M110.005561, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21505101

RESUMEN

Yeast cells lacking Ctf18, the major subunit of an alternative Replication Factor C complex, have multiple problems with genome stability. To understand the in vivo function of the Ctf18 complex, we analyzed chromatin composition in a ctf18Δ mutant using the quantitative proteomic technique of stable isotope labeling by amino acids in cell culture. Three hundred and seven of the 491 reported chromosomal proteins were quantitated. The most marked abnormalities occurred when cells were challenged with the replication inhibitor hydroxyurea. Compared with wild type, hydroxyurea-treated ctf18Δ cells exhibited increased chromatin association of replisome progression complex components including Cdc45, Ctf4, and GINS complex subunits, the polymerase processivity clamp PCNA and the single-stranded DNA-binding complex RPA. Chromatin composition abnormalities observed in ctf18Δ cells were very similar to those of an mrc1Δ mutant, which is defective in the activating the Rad53 checkpoint kinase in response to DNA replication stress. We found that ctf18Δ cells are also defective in Rad53 activation, revealing that the Ctf18 complex is required for engagement of the DNA replication checkpoint. Inappropriate initiation of replication at late origins, because of loss of the checkpoint, probably causes the elevated level of chromatin-bound replisome proteins in the ctf18Δ mutant. The role of Ctf18 in checkpoint activation is not shared by all Replication Factor C-like complexes, because proteomic analysis revealed that cells lacking Elg1 (the major subunit of a different Replication Factor C-like complex) display a different spectrum of chromatin abnormalities. Identification of Ctf18 as a checkpoint protein highlights the usefulness of chromatin proteomic analysis for understanding the in vivo function of proteins that mediate chromatin transactions.


Asunto(s)
Ciclo Celular , Cromatina/metabolismo , Replicación del ADN , Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Marcaje Isotópico , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
J Cell Sci ; 123(Pt 7): 1015-9, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20197407

RESUMEN

Peripheral nuclear localization of chromosomal loci correlates with late replication in yeast and metazoan cells. To test whether peripheral positioning can impose late replication, we examined whether artificial tethering of an early-initiating replication origin to the nuclear periphery delays its replication in budding yeast. We tested the effects of three different peripheral tethering constructs on the time of replication of the early replication origin ARS607. Using the dense-isotope transfer method to assess replication time, we found that ARS607 still replicates early when tethered to the nuclear periphery using the Yif1 protein or a fragment of Sir4, whereas tethering using a Yku80 construct produces only a very slight replication delay. Single-cell microscopic analysis revealed no correlation between peripheral positioning of ARS607 in individual cells and delayed replication. Overall, our results demonstrate that a replication origin can initiate replication early in S phase, even if artificially relocated to the nuclear periphery.


Asunto(s)
Núcleo Celular/genética , Aparato de Golgi/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Origen de Réplica/genética , Saccharomycetales/genética , Proteínas Adaptadoras del Transporte Vesicular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN , ADN de Hongos/análisis , Proteínas de Unión al ADN/genética , Microscopía , Ingeniería de Proteínas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética
14.
Elife ; 112022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416772

RESUMEN

RIF1 is a multifunctional protein that plays key roles in the regulation of DNA processing. During repair of DNA double-strand breaks (DSBs), RIF1 functions in the 53BP1-Shieldin pathway that inhibits resection of DNA ends to modulate the cellular decision on which repair pathway to engage. Under conditions of replication stress, RIF1 protects nascent DNA at stalled replication forks from degradation by the DNA2 nuclease. How these RIF1 activities are regulated at the post-translational level has not yet been elucidated. Here, we identified a cluster of conserved ATM/ATR consensus SQ motifs within the intrinsically disordered region (IDR) of mouse RIF1 that are phosphorylated in proliferating B lymphocytes. We found that phosphorylation of the conserved IDR SQ cluster is dispensable for the inhibition of DSB resection by RIF1, but is essential to counteract DNA2-dependent degradation of nascent DNA at stalled replication forks. Therefore, our study identifies a key molecular feature that enables the genome-protective function of RIF1 during DNA replication stress.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , Animales , ADN/metabolismo , Reparación del ADN , Ratones , Fosforilación , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
15.
Cell Rep ; 36(2): 109383, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260925

RESUMEN

DNA double-strand breaks (DSBs) are repaired mainly by non-homologous end joining (NHEJ) or homologous recombination (HR). RIF1 negatively regulates resection through the effector Shieldin, which associates with a short 3' single-stranded DNA (ssDNA) overhang by the MRN (MRE11-RAD50-NBS1) complex, to prevent further resection and HR repair. In this study, we show that RIF1, but not Shieldin, inhibits the accumulation of CtIP at DSB sites immediately after damage, suggesting that RIF1 has another effector besides Shieldin. We find that protein phosphatase 1 (PP1), a known RIF1 effector in replication, localizes at damage sites dependent on RIF1, where it suppresses downstream CtIP accumulation and limits the resection by the MRN complex. PP1 therefore acts as a RIF1 effector distinct from Shieldin. Furthermore, PP1 deficiency in the context of Shieldin depletion elevates HR immediately after irradiation. We conclude that PP1 inhibits resection before the action of Shieldin to prevent precocious HR in the early phase of the damage response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína BRCA1/metabolismo , Secuencia de Bases , Roturas del ADN de Doble Cadena/efectos de los fármacos , Endodesoxirribonucleasas/metabolismo , Células HeLa , Recombinación Homóloga/efectos de los fármacos , Humanos , Complejos Multiproteicos/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica/efectos de los fármacos
16.
Science ; 372(6540): 371-378, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888635

RESUMEN

The temporal order of DNA replication [replication timing (RT)] is correlated with chromatin modifications and three-dimensional genome architecture; however, causal links have not been established, largely because of an inability to manipulate the global RT program. We show that loss of RIF1 causes near-complete elimination of the RT program by increasing heterogeneity between individual cells. RT changes are coupled with widespread alterations in chromatin modifications and genome compartmentalization. Conditional depletion of RIF1 causes replication-dependent disruption of histone modifications and alterations in genome architecture. These effects were magnified with successive cycles of altered RT. These results support models in which the timing of chromatin replication and thus assembly plays a key role in maintaining the global epigenetic state.


Asunto(s)
Momento de Replicación del ADN , Epigénesis Genética , Epigenoma , Proteínas de Unión a Telómeros/metabolismo , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Replicación del ADN , Expresión Génica , Técnicas de Inactivación de Genes , Genoma Humano , Heterocromatina/metabolismo , Código de Histonas , Histonas/metabolismo , Humanos , Proteínas de Unión a Telómeros/genética
17.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141022

RESUMEN

Human cells lacking RIF1 are highly sensitive to replication inhibitors, but the reasons for this sensitivity have been enigmatic. Here, we show that RIF1 must be present both during replication stress and in the ensuing recovery period to promote cell survival. Of two isoforms produced by alternative splicing, we find that RIF1-Long alone can protect cells against replication inhibition, but RIF1-Short is incapable of mediating protection. Consistent with this isoform-specific role, RIF1-Long is required to promote the formation of the 53BP1 nuclear bodies that protect unrepaired damage sites in the G1 phase following replication stress. Overall, our observations show that RIF1 is needed at several cell cycle stages after replication insult, with the RIF1-Long isoform playing a specific role during the ensuing G1 phase in damage site protection.


Asunto(s)
Núcleo Celular/genética , Replicación del ADN , Fase G1 , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
18.
Methods Mol Biol ; 521: 295-313, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19563113

RESUMEN

Effective experimental techniques are available to identify replication origin regions in eukaryotic cells. Genome-wide identification of the precise sequence elements that direct origin activity is however still not straightforward, even in the yeast Saccharomyces cerevisiae which has the best characterised eukaryotic replication origins. The availability of genome sequences for a series of closely related (sensu stricto) budding yeasts has allowed us to take a 'comparative genomics' approach to this problem. Since they represent functional protein-binding sites, origin sequences are conserved better than the surrounding intergenic sequence within the genomes of closely related yeasts. We describe here how phylogenetic comparison data can be used to identify candidate replication origin sequences in the S. cerevisiae genome, and how large numbers of such candidate sites can simultaneously be assayed for ability to initiate replication. Similar approaches could potentially be used to identify protein-binding sequence elements having other functions, as well as replication origin sites in other species.


Asunto(s)
Replicación del ADN/genética , Genómica/métodos , Origen de Réplica , Secuencia de Bases , Biología Computacional , Secuencia Conservada , ADN de Hongos/biosíntesis , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Genoma Fúngico , Genómica/estadística & datos numéricos , Datos de Secuencia Molecular , Filogenia , Plásmidos/biosíntesis , Plásmidos/genética , Plásmidos/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Nucleic Acids Res ; 35(Database issue): D40-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17065467

RESUMEN

Replication of eukaryotic chromosomes initiates at multiple sites called replication origins. Replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where several complementary studies have mapped their locations genome-wide. We have collated these datasets, taking account of the resolution of each study, to generate a single list of distinct origin sites. OriDB provides a web-based catalogue of these confirmed and predicted S.cerevisiae DNA replication origin sites. Each proposed or confirmed origin site appears as a record in OriDB, with each record comprising seven pages. These pages provide, in text and graphical formats, the following information: genomic location and chromosome context of the origin site; time of origin replication; DNA sequence of proposed or experimentally confirmed origin elements; free energy required to open the DNA duplex (stress-induced DNA duplex destabilization or SIDD); and phylogenetic conservation of sequence elements. In addition, OriDB encourages community submission of additional information for each origin site through a User Notes facility. Origin sites are linked to several external resources, including the Saccharomyces Genome Database (SGD) and relevant publications at PubMed. Finally, a Chromosome Viewer utility allows users to interactively generate graphical representations of DNA replication data genome-wide. OriDB is available at www.oridb.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Origen de Réplica , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos , Gráficos por Computador , Replicación del ADN , ADN de Hongos/química , Internet , Interfaz Usuario-Computador
20.
Genome Biol ; 20(1): 111, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31146781

RESUMEN

Recent studies have accomplished the extraordinary feat of measuring the exact status of DNA replication in individual cells. We outline how these studies have revealed surprising uniformity in how cells replicate their DNA, and consider the implications of this remarkable technological advance.


Asunto(s)
Replicación del ADN , Análisis de la Célula Individual , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA