Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Biophys J ; 48(7): 621-633, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31324942

RESUMEN

Antimicrobial peptides are a large group of natural compounds which present promising properties for the pharmaceutical and food industries, such as broad-spectrum activity, potential for use as natural preservatives, and reduced propensity for development of bacterial resistance. Plantaricin 149 (Pln149), isolated from Lactobacillus plantarum NRIC 149, is an intrinsically disordered peptide with the ability to inhibit bacteria from the Listeria and Staphylococcus genera, and which is capable of promoting inhibition and disruption of yeast cells. In this study, the interactions of Pln149 with model membranes composed of zwitterionic and/or anionic phospholipids were investigated using a range of biophysical techniques, including isothermal titration calorimetry, surface tension measurements, synchrotron radiation circular dichroism spectroscopy, oriented circular dichroism spectroscopy, and optical microscopy, to elucidate these peptides' mode of interactions and provide insight into their functional roles. In anionic model membranes, the binding of Pln149 to lipid bilayers is an endothermic process and induces a helical secondary structure in the peptide. The helices bind parallel to the surfaces of lipid bilayers and can promote vesicle disruption, depending on peptide concentration. Although Pln149 has relatively low affinity for zwitterionic liposomes, it is able to adsorb at their lipid interfaces, disturbing the lipid packing, assuming a similar parallel helix structure with a surface-bound orientation, and promoting an increase in the membrane surface area. Such findings can explain the intriguing inhibitory action of Pln149 in yeast cells whose cell membranes have a significant zwitterionic lipid composition.


Asunto(s)
Bacteriocinas/química , Bacteriocinas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Adsorción , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Unión Proteica , Tensión Superficial , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
2.
J Colloid Interface Sci ; 624: 579-592, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35690012

RESUMEN

Rhamnolipids (RLs) are biosurfactants with significant tensioactive and emulsifying properties. They are mainly composed by mono-RL and di-RL components. Although there are numerous studies concerning their molecular properties, information is scarce regarding the mechanisms by which each of the two components interacts with cell membranes. Herein, we performed phase-contrast and fluorescence microscopy experiments on plasma membrane models represented by giant-unilamellar-vesicles (GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-[[(E,2S,3R)-1,3-dihydroxy-2-(octadecanoylamino) octadec-4-enyl]peroxy-hydroxyphosphoryl]oxyethyl-trimethylazanium (sphingomyelin, SM) and (3ß)-cholest-5-en-3-ol (cholesterol, CHOL) (1:1:1 M ratio), which present liquid-order (Lo) liquid-disorder (Ld) phase coexistence, in the presence of either mono-RL or di-RL in 0.06-0.25 mM concentration range. A new method has been developed to determine area and volume of GUVs with asymmetrical shape and a kinetic model describing GUV-RL interaction in terms of two mechanisms, RL-insertion and pore formation, has been worked out. Results show that the insertion of mono-RL in the membrane outer leaflet is the dominant process with no pore formation and a negligible effect in modifying membrane permeability, but induces lipid mixing. Conversely, the di-RL-GUV interaction begins with the insertion mechanism and, as the time passes by, the pore formation process occurs. The analyses of di-RL show that the whole process is only relevant in the Ld phase with a higher extent to 0.25 mM than to 0.06 mM.


Asunto(s)
Esfingomielinas , Liposomas Unilamelares , Membrana Celular , Decanoatos , Glucolípidos , Membrana Dobles de Lípidos , Fosfatidilcolinas , Ramnosa/análogos & derivados
3.
Toxicon ; 204: 44-55, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34736955

RESUMEN

Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.


Asunto(s)
Peróxido de Hidrógeno , Fosfolípidos , Membrana Dobles de Lípidos , Compuestos Orgánicos , Esfingomielinas , Liposomas Unilamelares
4.
J Colloid Interface Sci ; 582(Pt B): 669-677, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32916572

RESUMEN

Rhamnolipids (RLs) comprise a class of glycolipids produced by Pseudomonas aeruginosa under appropriate culture medium. They act as biosurfactants being composed by a hydrophilic head of either one (mono-RL) or two (di-RL) rhamnose moieties coupled to hydroxyaliphatic chains. It is well accepted that RLs present low biolitic activity as compared to other synthetic surfactants. However, their mechanisms of action in biological systems are not well defined yet. The interaction of RLs with lipid bilayers are here investigated to address how they impact on plasma membrane at molecular level. Our experimental approach was based on a deep analysis of optical microscopy data from giant unilamellar vesicles (GUVs) dispersed in aqueous solutions containing up to 0.5 mM of commercially available RLs (a mixture of mono-RL, 33-37 mol%, and di-RL, 63-67 mol%, cmc of 0.068±0.005 mM). GUVs were made up of a single lipid POPC and a ternary system containing DOPC, sphingomyelin and cholesterol, which mimic lipid raft platforms. Our results demonstrate that RLs have a low partition in the lipid bilayer in respect to the total molecules in solution. We suppose that RLs insert in the outer leaflet with low propensity to flip-flop. In the case of POPC GUVs, the insertion of RL molecules in the outer leaflet impairs changes in spontaneous membrane curvature with incubation time. Then, small buds are formed that remain linked to the original membrane. No changes in membrane permeability have been detected. A remarkable result refers to the insertion of RLs in membranes containing liquid ordered (Lo) - liquid disordered (Ld) phase coexistence. The rate of interaction has been observed to be higher for Ld phase than for Lo phase (0.12·10-6 s-1 and 0.023·10-6 s-1 for Ld and Lo, respectively, at RL concentration of 0.5 mM). As a consequence, the preferential RL insertion in Ld phase may also alter the membrane spontaneous curvature which, coupled to the change in the line tension associated to the domains boundary, conducted to Lo domain protrusion. Even if it has been observed on a model system, such membrane remodelling might correlate to endocytic processes activated in cell membranes, regardless of the participation of specific proteins. Further, changes imposed by RLs in lipid rafts may affect the association of key proteins enrolled in cell signaling, which may perturb cell homeostasis.


Asunto(s)
Membrana Dobles de Lípidos , Microdominios de Membrana , Membrana Celular , Glucolípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA