Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690713

RESUMEN

Spatial segmentation is an essential processing method for image analysis aiming to identify the characteristic suborgans or microregions from mass spectrometry imaging (MSI) data, which is critical for understanding the spatial heterogeneity of biological information and function and the underlying molecular signatures. Due to the intrinsic characteristics of MSI data including spectral nonlinearity, high-dimensionality, and large data size, the common segmentation methods lack the capability for capturing the accurate microregions associated with biological functions. Here we proposed an ensemble learning-based spatial segmentation strategy, named eLIMS, that combines a randomized unified manifold approximation and projection (r-UMAP) dimensionality reduction module for extracting significant features and an ensemble pixel clustering module for aggregating the clustering maps from r-UMAP. Three MSI datasets are used to evaluate the performance of eLIMS, including mouse fetus, human adenocarcinoma, and mouse brain. Experimental results demonstrate that the proposed method has potential in partitioning the heterogeneous tissues into several subregions associated with anatomical structure, i.e., the suborgans of the brain region in mouse fetus data are identified as dorsal pallium, midbrain, and brainstem. Furthermore, it effectively discovers critical microregions related to physiological and pathological variations offering new insight into metabolic heterogeneity.

2.
Anal Chem ; 96(19): 7634-7642, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691624

RESUMEN

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Metabolómica/métodos , Neoplasias Pulmonares/metabolismo , Piridinas/química
3.
Anal Chem ; 96(9): 3829-3836, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38377545

RESUMEN

Mass spectrometry imaging (MSI) is a high-throughput imaging technique capable of the qualitative and quantitative in situ detection of thousands of ions in biological samples. Ion image representation is a technique that produces a low-dimensional vector embedded with significant spectral and spatial information on an ion image, which further facilitates the distance-based similarity measurement for the identification of colocalized ions. However, given the low signal-to-noise ratios inherent in MSI data coupled with the scarcity of annotated data sets, achieving an effective ion image representation for each ion image remains a challenge. In this study, we propose DeepION, a novel deep learning-based method designed specifically for ion image representation, which is applied to the identification of colocalized ions and isotope ions. In DeepION, contrastive learning is introduced to ensure that the model can generate the ion image representation in a self-supervised manner without manual annotation. Since data augmentation is a crucial step in contrastive learning, a unique data augmentation strategy is designed by considering the characteristics of MSI data, such as the Poisson distribution of ion abundance and a random pattern of missing values, to generate plentiful ion image pairs for DeepION model training. Experimental results of rat brain tissue MSI show that DeepION outperforms other methods for both colocalized ion and isotope ion identification, demonstrating the effectiveness of ion image representation. The proposed model could serve as a crucial tool in the biomarker discovery and drug development of the MSI technique.


Asunto(s)
Aprendizaje Profundo , Ratas , Animales , Espectrometría de Masas , Diagnóstico por Imagen , Iones , Isótopos
4.
Anal Chem ; 95(33): 12505-12513, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37557184

RESUMEN

Metabolic pathways are regarded as functional and basic components of the biological system. In metabolomics, metabolite set enrichment analysis (MSEA) is often used to identify the altered metabolic pathways (metabolite sets) associated with phenotypes of interest (POI), e.g., disease. However, in most studies, MSEA suffers from the limitation of low metabolite coverage. Random walk (RW)-based algorithms can be used to propagate the perturbation of detected metabolites to the undetected metabolites through a metabolite network model prior to MSEA. Nevertheless, most of the existing RW-based algorithms run on a general metabolite network constructed based on public databases, such as KEGG, without taking into consideration the potential influence of POI on the metabolite network, which may reduce the phenotypic specificities of the MSEA results. To solve this problem, a novel pathway analysis strategy, namely, differential correlation-informed MSEA (dci-MSEA), is proposed in this paper. Statistically, differential correlations between metabolites are used to evaluate the influence of POI on the metabolite network, so that a phenotype-specific metabolite network is constructed for RW-based propagation. The experimental results show that dci-MSEA outperforms the conventional RW-based MSEA in identifying the altered metabolic pathways associated with colorectal cancer. In addition, by incorporating the individual-specific metabolite network, the dci-MSEA strategy is easily extended to disease heterogeneity analysis. Here, dci-MSEA was used to decipher the heterogeneity of colorectal cancer. The present results highlight the clustering of colorectal cancer samples with their cluster-specific selection of differential pathways and demonstrate the feasibility of dci-MSEA in heterogeneity analysis. Taken together, the proposed dci-MSEA may provide insights into disease mechanisms and determination of disease heterogeneity.


Asunto(s)
Neoplasias Colorrectales , Metabolómica , Humanos , Metabolómica/métodos , Redes y Vías Metabólicas , Algoritmos , Fenotipo
5.
Anal Chem ; 95(18): 7220-7228, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37115661

RESUMEN

For a large-scale metabolomics study, sample collection, preparation, and analysis may last several days, months, or even (intermittently) over years. This may lead to apparent batch effects in the acquired metabolomics data due to variability in instrument status, environmental conditions, or experimental operators. Batch effects may confound the true biological relationships among metabolites and thus obscure real metabolic changes. At present, most of the commonly used batch effect correction (BEC) methods are based on quality control (QC) samples, which require sufficient and stable QC samples. However, the quality of the QC samples may deteriorate if the experiment lasts for a long time. Alternatively, isotope-labeled internal standards have been used, but they generally do not provide good coverage of the metabolome. On the other hand, BEC can also be conducted through a data-driven method, in which no QC sample is needed. Here, we propose a novel data-driven BEC method, namely, CordBat, to achieve concordance between each batch of samples. In the proposed CordBat method, a reference batch is first selected from all batches of data, and the remaining batches are referred to as "other batches." The reference batch serves as the baseline for the batch adjustment by providing a coordinate of correlation between metabolites. Next, a Gaussian graphical model is built on the combined dataset of reference and other batches, and finally, BEC is achieved by optimizing the correction coefficients in the other batches so that the correlation between metabolites of each batch and their combinations are in concordance with that of the reference batch. Three real-world metabolomics datasets are used to evaluate the performance of CordBat by comparing it with five commonly used BEC methods. The present experimental results showed the effectiveness of CordBat in batch effect removal and the concordance of correlation between metabolites after BEC. CordBat was found to be comparable to the QC-based methods and achieved better performance in the preservation of biological effects. The proposed CordBat method may serve as an alternative BEC method for large-scale metabolomics that lack proper QC samples.


Asunto(s)
Metaboloma , Metabolómica , Espectrometría de Masas/métodos , Control de Calidad , Metabolómica/métodos
6.
Anal Chem ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633187

RESUMEN

Research on metabolic heterogeneity provides an important basis for the study of the molecular mechanism of a disease and personalized treatment. The screening of metabolism-related sub-regions that affect disease development is essential for the more focused exploration on disease progress aberrant phenotypes, even carcinogenesis and metastasis. The mass spectrometry imaging (MSI) technique has distinct advantages to reveal the heterogeneity of an organism based on in situ molecular profiles. The challenge of heterogeneous analysis has been to perform an objective identification among biological tissues with different characteristics. By introducing the divide-and-conquer strategy to architecture design and application, we establish here a flexible unsupervised deep learning model, called divide-and-conquer (dc)-DeepMSI, for metabolic heterogeneity analysis from MSI data without prior knowledge of histology. dc-DeepMSI can be used to identify either spatially contiguous regions of interest (ROIs) or spatially sporadic ROIs by designing two specific modes, spat-contig and spat-spor. Comparison results on fetus mouse data demonstrate that the dc-DeepMSI outperforms state-of-the-art MSI segmentation methods. We demonstrate that the novel learning strategy successfully obtained sub-regions that are statistically linked to the invasion status and molecular phenotypes of breast cancer as well as organizing principles during developmental phase.

7.
Anal Chem ; 95(15): 6203-6211, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37023366

RESUMEN

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metabolómica/métodos , Redes y Vías Metabólicas , Interacciones Farmacológicas
8.
Anal Chem ; 95(25): 9714-9721, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296503

RESUMEN

High-resolution reconstruction has attracted increasing research interest in mass spectrometry imaging (MSI), but it remains a challenging ill-posed problem. In the present study, we proposed a deep learning model to fuse multimodal images to enhance the spatial resolution of MSI data, namely, DeepFERE. Hematoxylin and eosin (H&E) stain microscopy imaging was used to pose constraints in the process of high-resolution reconstruction to alleviate the ill-posedness. A novel model architecture was designed to achieve multi-task optimization by incorporating multi-modal image registration and fusion in a mutually reinforced framework. Experimental results demonstrated that the proposed DeepFERE model is able to produce high-resolution reconstruction images with rich chemical information and a detailed structure on both visual inspection and quantitative evaluation. In addition, our method was found to be able to improve the delimitation of the boundary between cancerous and para-cancerous regions in the MSI image. Furthermore, the reconstruction of low-resolution spatial transcriptomics data demonstrated that the developed DeepFERE model may find wider applications in biomedical fields.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía , Espectrometría de Masas/métodos , Procesamiento de Imagen Asistido por Computador/métodos
9.
Anal Chem ; 95(46): 16830-16839, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37943818

RESUMEN

Metabolite isomers play diverse and crucial roles in various metabolic processes. However, in untargeted metabolomics analysis, it remains a great challenge to distinguish between the constitutional isomers and enantiomers of amine-containing metabolites due to their similar chemical structures and physicochemical properties. In this work, the triplex stable isotope N-phosphoryl amino acids labeling (SIPAL) is developed to identify and relatively quantify the amine-containing metabolites and their isomers by using chiral phosphorus reagents coupled with high-resolution tandem mass spectroscopy. The constitutional isomers could be effectively distinguished with stereo isomers by using the diagnosis ions in MS/MS spectra. The in-house software MS-Isomerism has been parallelly developed for high-throughput screening and quantification. The proposed strategy enables the unbiased detection and relative quantification of isomers of amine-containing metabolites. Based on the characteristic triplet peaks with SIPAL tags, a total of 854 feature peaks with 154 isomer groups are successfully recognized as amine-containing metabolites in liver cells, in which 37 amine-containing metabolites, including amino acids, polyamines, and small peptides, are found to be significantly different between liver cancer cells and normal cells. Notably, it is the first time to identify S-acetyl-glutathione as an endogenous metabolite in liver cells. The SIPAL strategy could provide spectacular insight into the chemical structures and biological functions of the fascinating amine-containing metabolite isomers. The feasibility of SIPAL in isomeric metabolomics analysis may reach a deeper understanding of the mirror-chemistry in life and further advance the discovery of novel biomarkers for disease diagnosis.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Indicadores y Reactivos , Isomerismo , Cromatografía Liquida/métodos , Aminoácidos/química , Metabolómica/métodos , Poliaminas
10.
Magn Reson Chem ; 61(12): 718-727, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36882950

RESUMEN

Investigation of mitochondrial metabolism is gaining increased interest owing to the growing recognition of the role of mitochondria in health and numerous diseases. Studies of isolated mitochondria promise novel insights into the metabolism devoid of confounding effects from other cellular organelles such as cytoplasm. This study describes the isolation of mitochondria from mouse skeletal myoblast cells (C2C12) and the investigation of live mitochondrial metabolism in real-time using isotope tracer-based NMR spectroscopy. [3-13 C1 ]pyruvate was used as the substrate to monitor the dynamic changes of the downstream metabolites in mitochondria. The results demonstrate an intriguing phenomenon, in which lactate is produced from pyruvate inside the mitochondria and the results were confirmed by treating mitochondria with an inhibitor of mitochondrial pyruvate carrier (UK5099). Lactate is associated with health and numerous diseases including cancer and, to date, it is known to occur only in the cytoplasm. The insight that lactate is also produced inside mitochondria opens avenues for exploring new pathways of lactate metabolism. Further, experiments performed using inhibitors of the mitochondrial respiratory chain, FCCP and rotenone, show that [2-13 C1 ]acetyl coenzyme A, which is produced from [3-13 C1 ]pyruvate and acts as a primary substrate for the tricarboxylic acid cycle in mitochondria, exhibits a remarkable sensitivity to the inhibitors. These results offer a direct approach to visualize mitochondrial respiration through altered levels of the associated metabolites.


Asunto(s)
Mitocondrias , Ácido Pirúvico , Ratones , Animales , Mitocondrias/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo
11.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298809

RESUMEN

The quality of Panax Linn products available in the market is threatened by adulteration with different Panax species, such as Panax quinquefolium (PQ), Panax ginseng (PG), and Panax notoginseng (PN). In this paper, we established a 2D band-selective heteronuclear single quantum coherence (bs-HSQC) NMR method to discriminate species and detect adulteration of Panax Linn. The method involves selective excitation of the anomeric carbon resonance region of saponins and non-uniform sampling (NUS) to obtain high-resolution spectra in less than 10 min. The combined strategy overcomes the signal overlap limitation in 1H NMR and the long acquisition time in traditional HSQC. The present results showed that twelve well-separated resonance peaks can be assigned in the bs-HSQC spectra, which are of high resolution, good repeatability, and precision. Notably, the identification accuracy of species was found to be 100% for all tests conducted in the present study. Furthermore, in combination with multivariate statistical methods, the proposed method can effectively determine the composition proportion of adulterants (from 10% to 90%). Based on the PLS-DA models, the identification accuracy was greater than 80% when composition proportion of adulterants was 10%. Thus, the proposed method may provide a fast, practical, and effective analysis technique for food quality control or authenticity identification.


Asunto(s)
Panax notoginseng , Panax , Saponinas , Panax/química , Panax notoginseng/química , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética
12.
Angew Chem Int Ed Engl ; 62(22): e202303656, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37016511

RESUMEN

Stable isotope chemical labeling methods have been widely used for high-throughput mass spectrometry (MS)-based quantitative proteomics in biological and clinical applications. However, the existing methods are far from meeting the requirements for high sensitivity detection. In the present study, a novel isobaric stable isotope N-phosphorylation labeling (iSIPL) strategy was developed for quantitative proteome analysis. The tryptic peptides were selectively labeled with iSIPL tag to generate the novel reporter ions containing phosphoramidate P-N bond with high intensities under lower collision energies. iSIPL strategy are suitable for peptide sequencing and quantitative analysis with high sensitivity and accuracy even for samples of limited quantity. Furthermore, iSIPL coupled with affinity purification and mass spectrometry was applied to measure the dynamics of cyclin dependent kinase 9 (CDK9) interactomes during transactivation of the HIV-1 provirus. The interaction of CDK9 with PARP13 was found to significantly decrease during Tat-induced activation of HIV-1 gene transcription, suggesting the effectiveness of iSIPL strategy in dynamic analysis of protein-protein interaction in vivo. More than that, the proposed iSIPL strategy would facilitate large-scale accurate quantitative proteomics by increasing multiplexing capability.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Fosforilación , Péptidos/química , Marcaje Isotópico/métodos , Isótopos
13.
Anal Chem ; 94(7): 3194-3202, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35104404

RESUMEN

Chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) is an emerging metabolomic strategy for the quantification and characterization of small molecular compounds in biological samples. However, its subsequent data analysis is not straightforward due to a large amount of data produced and interference of biological matrices. In order to improve the efficiency of searching and identification of target endogenous metabolites, a new software tool for nontargeted metabolomics data processing called MS-IDF was developed based on the principle of a narrow mass defect filter. The developed tool provided two function modules, including IsoFinder and MDFinder. The IsoFinder function module applied a conventional peak extraction method by using a fixed mass differences between the heavy and light labels and by the alignment of chromatographic retention time (RT). On the other hand, MDFinder was designed to incorporate the accurate mass defect differences between or among stable isotopes in the peak extraction process. By setting an appropriate filter interval, the target metabolites can be efficiently screened out while eliminating interference. Notably, the present results showed that the efficiency in compound identification using the new MDFinder module was nearly doubled as compared to the conventional IsoFinder method (an increase from 259 to 423 compounds). The Matlab codes of the developed MS-IDF software are available from github at https://github.com/jydong2018/MS_IDF. Based on the MS-IDF software tool, a novel and effective approach from nontargeted to targeted metabolomics research was developed and applied to the exploration of potential primary amine biomarkers in patients with schizophrenia. With this approach, potential biomarkers, including N,N-dimethylglycine, S-adenosine-l-methionine, dl-homocysteine, and spermidine, were discovered.


Asunto(s)
Metabolómica , Programas Informáticos , Cromatografía Liquida/métodos , Humanos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos
14.
Anal Chem ; 94(42): 14522-14529, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36223650

RESUMEN

Spatial segmentation is a critical procedure in mass spectrometry imaging (MSI)-based biochemical analysis. However, the commonly used unsupervised MSI segmentation methods may lead to inappropriate segmentation results as the MSI data is characterized by high dimensionality and low signal-to-noise ratio. This process can be improved by the incorporation of precise prior knowledge, which is hard to obtain in most cases. In this study, we show that the incorporation of partial or coarse prior knowledge from different sources such as reference images or biological knowledge may also help to improve MSI segmentation results. Here, we propose a novel interactive segmentation strategy for MSI data called iSegMSI, which incorporates prior information in the form of scribble-regularization of the unsupervised model to fine-tune the segmentation results. By using two typical MSI data sets (including a whole-body mouse fetus and human thyroid cancer), the present results demonstrate the effectiveness of the iSegMSI strategy in improving the MSI segmentations. Specifically, the method can be used to subdivide a region into several subregions specified by the user-defined scribbles or to merge several subregions into a single region. Additionally, these fine-tuned results are highly tolerant to the imprecision of the scribbles. Our results suggest that the proposed iSegMSI method may be an effective preprocessing strategy to facilitate the analysis of MSI data.


Asunto(s)
Feto , Procesamiento de Imagen Asistido por Computador , Animales , Humanos , Ratones , Espectrometría de Masas , Procesamiento de Imagen Asistido por Computador/métodos , Diagnóstico por Imagen
15.
J Proteome Res ; 20(6): 3204-3213, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34002606

RESUMEN

Metabolite set enrichment analysis (MSEA) has gained increasing research interest for identification of perturbed metabolic pathways in metabolomics. The method incorporates predefined metabolic pathways information in the analysis where metabolite sets are typically assumed to be mutually exclusive to each other. However, metabolic pathways are known to contain common metabolites and intermediates. This situation, along with limitations in metabolite detection or coverage leads to overlapping, incomplete metabolite sets in pathway analysis. For overlapping metabolite sets, MSEA tends to result in high false positives due to improper weights allocated to the overlapping metabolites. Here, we proposed an extended partial least squares (PLS) model with a new sparse scheme for overlapping metabolite set enrichment analysis, named overlapping group PLS (ogPLS) analysis. The weight vector of the ogPLS model was decomposed into pathway-specific subvectors, and then a group lasso penalty was imposed on these subvectors to achieve a proper weight allocation for the overlapping metabolites. Two strategies were adopted in the proposed ogPLS model to identify the perturbed metabolic pathways. The first strategy involves debiasing regularization, which was used to reduce inequalities amongst the predefined metabolic pathways. The second strategy is stable selection, which was used to rank pathways while avoiding the nuisance problems of model parameter optimization. Both simulated and real-world metabolomic datasets were used to evaluate the proposed method and compare with two other MSEA methods including Global-test and the multiblock PLS (MB-PLS)-based pathway importance in projection (PIP) methods. Using a simulated dataset with known perturbed pathways, the average true discovery rate for the ogPLS method was found to be higher than the Global-test and the MB-PLS-based PIP methods. Analysis with a real-world metabolomics dataset also indicated that the developed method was less prone to select pathways with highly overlapped detected metabolite sets. Compared with the two other methods, the proposed method features higher accuracy, lower false-positive rate, and is more robust when applied to overlapping metabolite set analysis. The developed ogPLS method may serve as an alternative MSEA method to facilitate biological interpretation of metabolomics data for overlapping metabolite sets.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica , Análisis de los Mínimos Cuadrados
16.
J Proteome Res ; 20(1): 346-356, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33241931

RESUMEN

Identification of phosphorylation sites is an important step in the function study and drug design of proteins. In recent years, there have been increasing applications of the computational method in the identification of phosphorylation sites because of its low cost and high speed. Most of the currently available methods focus on using local information around potential phosphorylation sites for prediction and do not take the global information of the protein sequence into consideration. Here, we demonstrated that the global information of protein sequences may be also critical for phosphorylation site prediction. In this paper, a new deep neural network model, called DeepPSP, was proposed for the prediction of protein phosphorylation sites. In the DeepPSP model, two parallel modules were introduced to extract both local and global features from protein sequences. Two squeeze-and-excitation blocks and one bidirectional long short-term memory block were introduced into each module to capture effective representations of the sequences. Comparative studies were carried out to evaluate the performance of DeepPSP, and four other prediction methods using public data sets The F1-score, area under receiver operating characteristic curves (AUROC), and area under precision-recall curves (AUPRC) of DeepPSP were found to be 0.4819, 0.82, and 0.50, respectively, for S/T general site prediction and 0.4206, 0.73, and 0.39, respectively, for Y general site prediction. Compared with the MusiteDeep method, the F1-score, AUROC, and AUPRC of DeepPSP were found to increase by 8.6, 2.5, and 8.7%, respectively, for S/T general site prediction and by 20.6, 5.8, and 18.2%, respectively, for Y general site prediction. Among the tested methods, the developed DeepPSP method was also found to produce best results for different kinase-specific site predictions including CDK, mitogen-activated protein kinase, CAMK, AGC, and CMGC. Taken together, the developed DeepPSP method may offer a more accurate phosphorylation site prediction by including global information. It may serve as an alternative model with better performance and interpretability for protein phosphorylation site prediction.


Asunto(s)
Redes Neurales de la Computación , Proteínas , Secuencia de Aminoácidos , Biología Computacional , Fosforilación , Proteínas/metabolismo
17.
Anal Chem ; 93(11): 4788-4793, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33683863

RESUMEN

Mass spectrometry imaging (MSI) could provide vast amounts of data at the temporal-spatial scale in heterogeneous biological specimens, which challenges us to segment accurately suborgans/microregions from complex MSI data. Several pipelines had been proposed for MSI spatial segmentation in the past decade. More importantly, data filtering was found to be an efficient procedure to improve the outcomes of MSI segmentation pipelines. It is not clear, however, how the filtering procedure affects the MSI segmentation. An improved pipeline was established by elaborating the filtering prioritization and filtering algorithm. Lipidomic-characteristic-based MSI data of a whole-body mouse fetus was used to evaluate the established pipeline on localization of the physiological position of suborgans by comparing with three commonly used pipelines and commercial SCiLS Lab software. Two structural measurements were used to quantify the performances of the pipelines including the percentage of abnormal edge pixel (PAEP) and CHAOS. Our results demonstrated that the established pipeline outperformed the other pipelines in visual inspection, spatial consistence, time-cost, and robustness analysis. For example, the dorsal pallium (isocortex) and hippocampal formation (Hpf) regions, midbrain, cerebellum, and brainstem on the mouse brain were annotated and located by the established pipeline. As a generic pipeline, the established pipeline could help with the accurate assessment and screening of drug/chemical-induced targeted organs and exploration of the progression and molecular mechanisms of diseases. The filter-based strategy is expected to become a critical component in the standard operating procedure of MSI data sets.


Asunto(s)
Algoritmos , Programas Informáticos , Animales , Diagnóstico por Imagen , Espectrometría de Masas , Ratones
18.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641330

RESUMEN

In mass spectrometry (MS)-based metabolomics, missing values (NAs) may be due to different causes, including sample heterogeneity, ion suppression, spectral overlap, inappropriate data processing, and instrumental errors. Although a number of methodologies have been applied to handle NAs, NA imputation remains a challenging problem. Here, we propose a non-negative matrix factorization (NMF)-based method for NA imputation in MS-based metabolomics data, which makes use of both global and local information of the data. The proposed method was compared with three commonly used methods: k-nearest neighbors (kNN), random forest (RF), and outlier-robust (ORI) missing values imputation. These methods were evaluated from the perspectives of accuracy of imputation, retrieval of data structures, and rank of imputation superiority. The experimental results showed that the NMF-based method is well-adapted to various cases of data missingness and the presence of outliers in MS-based metabolic profiles. It outperformed kNN and ORI and showed results comparable with the RF method. Furthermore, the NMF method is more robust and less susceptible to outliers as compared with the RF method. The proposed NMF-based scheme may serve as an alternative NA imputation method which may facilitate biological interpretations of metabolomics data.


Asunto(s)
Biología Computacional/métodos , Metabolómica/métodos , Algoritmos , Análisis por Conglomerados , Espectrometría de Masas
19.
J Proteome Res ; 19(5): 1965-1974, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32174118

RESUMEN

In metabolomics, identification of metabolic pathways altered by disease, genetics, or environmental perturbations is crucial to uncover the underlying biological mechanisms. A number of pathway analysis methods are currently available, which are generally based on equal-probability, topological-centrality, or model-separability methods. In brief, prior identification of significant metabolites is needed for the first two types of methods, while each pathway is modeled separately in the model-separability-based methods. In these methods, interactions between metabolic pathways are not taken into consideration. The current study aims to develop a novel metabolic pathway identification method based on multi-block partial least squares (MB-PLS) analysis by including all pathways into a global model to facilitate biological interpretation. The detected metabolites are first assigned to pathway blocks based on their roles in metabolism as defined by the KEGG pathway database. The metabolite intensity or concentration data matrix is then reconstructed as data blocks according to the metabolite subsets. Then, a MB-PLS model is built on these data blocks. A new metric, named the pathway importance in projection (PIP), is proposed for evaluation of the significance of each metabolic pathway for group separation. A simulated dataset was generated by imposing artificial perturbation on four pre-defined pathways of the healthy control group of a colorectal cancer study. Performance of the proposed method was evaluated and compared with seven other commonly used methods using both an actual metabolomics dataset and the simulated dataset. For the real metabolomics dataset, most of the significant pathways identified by the proposed method were found to be consistent with the published literature. For the simulated dataset, the significant pathways identified by the proposed method are highly consistent with the pre-defined pathways. The experimental results demonstrate that the proposed method is effective for identification of significant metabolic pathways, which may facilitate biological interpretation of metabolomics data.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica , Análisis de los Mínimos Cuadrados
20.
J Proteome Res ; 19(2): 781-793, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31916767

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Because of its high recurrence rate and heterogeneity, effective treatment for advanced stage of HCC is currently lacking. There are accumulating evidences showing the therapeutic potential of pharmacologic vitamin C (VC) on HCC. However, the metabolic basis underlying the anticancer property of VC remains to be elucidated. In this study, we used a high-resolution proton nuclear magnetic resonance-based metabolomics technique to assess the global metabolic changes in HCC cells following VC treatment. In addition, the HCC cells were also treated with oxaliplatin (OXA) to explore the potential synergistic effect induced by the combined VC and OXA treatment. The current metabolomics data suggested different mechanisms of OXA and VC in modulating cell growth and metabolism. In general, VC treatment led to inhibition of energy metabolism via NAD+ depletion and amino acid deprivation. On the other hand, OXA caused significant perturbation in phospholipid biosynthesis and phosphatidylcholine biosynthesis pathways. The current results highlighted glutathione metabolism, and pathways related to succinate and choline may play central roles in conferring the combined effect between OXA and VC. Taken together, this study provided metabolic evidence of VC and OXA in treating HCC and may contribute toward the potential application of combined VC and OXA as complementary HCC therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácido Ascórbico/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Espectroscopía de Resonancia Magnética , Metaboloma , Recurrencia Local de Neoplasia , Oxaliplatino/farmacología , Espectroscopía de Protones por Resonancia Magnética , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA