Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(22): 14588-14595, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28537304

RESUMEN

Local rotational symmetry (LRS) of a particulate system is important for understanding its structure and phase transition. However, how to properly characterize LRS for this system is still a challenge as the system normally includes both ordered and disordered local structures. Herein, based on the so-called common neighbour subcluster (CNS), we proposed a method to characterize the LRS of uniform spheres packings with the packing fraction ρ ranging within 0.20 and 0.74. It was found that different fold LRSs coexist in most packings, and their maximum degree increases at ρ < 0.64, except for the 2-fold LRS held by 6-sphere CNS that continuously increases to form the fcc crystal at ρ = 0.74. The overall LRS involving all the CNSs monotonically increases with two critical changes at ρ = (0.35-0.40) and 0.64; the evolution of individual LRSs held by specific CNS groups critically changes at ρ ≈ (0.35-0.40), 0.50, 0.55-0.60, and 0.64. The physics corresponding to these critical changes has also been discussed. The findings will significantly enrich the understanding of the structural symmetry of materials including atoms and particles.

2.
Phys Chem Chem Phys ; 18(26): 17461-9, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27302145

RESUMEN

The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method. It is found that there are various types of short-range order (SRO) structures in the liquid, among which the icosahedral (ICO)-like structures are dominant. These SRO structures are in dynamic fluctuation and transform each other. The effect of the cooling rate on the microstructure is very weak at high temperatures and in supercooled liquids, and it appears only below the liquid-solid transition temperature. Fast cooling rates favour the formation of amorphous structures with ICO-like features, while slow cooling rates favour the formation of FCC crystalline structures. Furthermore, FCC and HCP structures can coexist in crystalline structures. It is also found that nanocrystalline aluminium can be achieved at appropriate cooling rates, and its formation mechanism is thoroughly investigated by tracing the evolution of nanoclusters. The arrangement of FCC and HCP atoms in the nanograins displays various twinned structures as observed using visualization analysis, which is different from the layering or phase separation structures observed in the solidification of Lennard-Jones fluids and some metal liquids.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26465463

RESUMEN

The packing of particles with a log-normal size distribution is studied by means of the discrete element method. The packing structures are analyzed in terms of the topological properties such as the number of faces per radical polyhedron and the number of edges per face, and the metric properties such as the perimeter and area per face and the perimeter, area, and volume per radical polyhedron, obtained from the radical tessellation. The effect of the geometric standard deviation in the log-normal distribution on these properties is quantified. It is shown that when the size distribution gets wider, the packing becomes denser; thus the radical tessellation of a particle has decreased topological and metric properties. The quantitative relationships obtained should be useful in the modeling and analysis of structural properties such as effective thermal conductivity and permeability.


Asunto(s)
Mezclas Complejas , Modelos Teóricos , Simulación por Computador , Tamaño de la Partícula
4.
Artículo en Inglés | MEDLINE | ID: mdl-24730832

RESUMEN

Structural analysis is very important to understanding the physics of atomic or particle systems of various types. However, properly characterizing the structures at different packing fraction ρ is still a challenge. Here we analyze the local structure, in terms of the so-called common-neighbor-subcluster (CNS), of sphere packings with ρ ∈ (0.2, 0.74). We show that although complicated in structure, there are totally 39 kinds of CNSs of which 12 are dominant. The evolution of these CNSs with the increase of ρ is quantified, and the rules governing the evolution are explored. The results are found to be useful in constructing a comprehensive picture about the critical states and their transition in sphere packing.

5.
Phys Rev Lett ; 96(14): 145505, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16712093

RESUMEN

We present a physical and numerical study of the settling of uniform spheres in liquids and show that interparticle forces play a critical role in forming the so-called random loose packing (RLP). Different packing conditions give different interparticle forces and, hence, different RLP. Two types of interparticle forces are identified: process dependent and process independent. The van der Waals force, as the major cohesive force in the present study, plays a critical role in effecting the process-dependent forces such as drag and lift forces. An equation is formulated to describe the relationship between the macroscopic packing fraction and microscopic interparticle forces in a packing. We argue there is no lowest packing fraction for a mechanically stable RLP; hence, the packing fractions of RLP can range from 0 to 0.64 depending on the cohesive and frictional conditions between particles.

6.
Phys Rev Lett ; 95(20): 205502, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16384069

RESUMEN

We present a numerical method capable of reproducing the densification process from the so-called random loose to dense packing of uniform spheres under vertical vibration. The effects of vibration amplitude and frequency are quantified, and the random close packing is shown to be achieved only if both parameters are properly controlled. Two densification mechanisms are identified: pushing filling by which the contact between spheres is maintained and jumping filling by which the contact between particles is periodically broken. In general, pushing filling occurs when the vibration intensity is low and jumping filling becomes dominant when the vibration intensity is high.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA