Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38399079

RESUMEN

There is an urgent need to develop novel and high-performance catalysts for chlorinated volatile organic compound oxidation as a co-benefit of NOx. In this work, HSiW/CeO2 was used for chlorobenzene (CB) oxidation as a co-benefit of NOx reduction and the inhibition mechanism of NH3 was explored. CB oxidation over HSiW/CeO2 primarily followed the Mars-van-Krevelen mechanism and the Eley-Rideal mechanism, and the CB oxidation rate was influenced by the concentrations of surface adsorbed CB, Ce4+ ions, lattice oxygen species, gaseous CB, and surface adsorbed oxygen species. NH3 not only strongly inhibited CB adsorption onto HSiW/CeO2, but also noticeably decreased the amount of lattice oxygen species; hence, NH3 had a detrimental effect on the Mars-van-Krevelen mechanism. Meanwhile, NH3 caused a decrease in the amount of oxygen species adsorbed on HSiW/CeO2, which hindered the Eley-Rideal mechanism of CB oxidation. Hence, NH3 significantly hindered CB oxidation over HSiW/CeO2. This suggests that the removal of NOx and CB over this catalyst operated more like a two-stage process rather than a synergistic one. Therefore, to achieve simultaneous NOx and CB removal, it would be more meaningful to focus on improving the performances of HSiW/CeO2 for NOx reduction and CB oxidation separately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA