Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cell Mol Med ; 25(17): 8201-8214, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34418283

RESUMEN

Hydrogen sulphide (H2 S) inhibits vascular smooth muscle cell (VSMC) proliferation induced by hyperglycaemia and hyperlipidaemia; however, the mechanisms are unclear. Here, we observed lower H2 S levels and higher expression of the proliferation-related proteins PCNA and cyclin D1 in db/db mouse aortae and vascular smooth muscle cells treated with 40 mmol/L glucose and 500 µmol/L palmitate, whereas exogenous H2 S decreased PCNA and cyclin D1 expression. The nuclear translocation of mitochondrial pyruvate dehydrogenase complex-E1 (PDC-E1) was significantly increased in VSMCs treated with high glucose and palmitate, and it increased the level of acetyl-CoA and histone acetylation (H3K9Ac). Exogenous H2 S inhibited PDC-E1 translocation from the mitochondria to the nucleus because PDC-E1 was modified by S-sulfhydration. In addition, PDC-E1 was mutated at Cys101. Overexpression of PDC-E1 mutated at Cys101 increased histone acetylation (H3K9Ac) and VSMC proliferation. Based on these findings, H2 S regulated PDC-E1 S-sulfhydration at Cys101 to prevent its translocation from the mitochondria to the nucleus and to inhibit VSMC proliferation under diabetic conditions.


Asunto(s)
Núcleo Celular , Diabetes Mellitus , Sulfuro de Hidrógeno/farmacología , Mitocondrias , Proteínas Mitocondriales/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Animales , Técnicas de Cultivo de Célula , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Liso Vascular , Miocitos del Músculo Liso
2.
J Cell Mol Med ; 25(19): 9154-9167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562065

RESUMEN

Accumulation of lipid droplets (LDs) induces cardiac dysfunctions in type 2 diabetes patients. Recent studies have shown that hydrogen sulphide (H2 S) ameliorates cardiac functions in db/db mice, but its regulation on the formation of LDs in cardiac tissues is unclear. Db/db mice were injected with NaHS (40 µmol·kg-1 ) for twelve weeks. H9c2 cells were treated with high glucose (40 mmol/L), oleate (200 µmol/L), palmitate (200 µmol/L) and NaHS (100 µmol/L) for 48 hours. Plasmids for the overexpression of wild-type Hrd1 and Hrd1 mutated at Cys115 were constructed. The interaction between Hrd1 and DGAT1 and DGAT2, the ubiquitylation level of DGAT1 and 2, the S-sulfhydration of Hrd1 were measured. Exogenous H2 S ameliorated the cardiac functions, decreased ER stress and reduced the number of LDs in db/db mice. Exogenous H2 S could elevate the ubiquitination level of DGAT 1 and 2 and increased the expression of Hrd1 in cardiac tissues of db/db mice. The S-sulfhydration of Hrd1 by NaHS enhanced the interaction between Hrd1 and DGAT1 and 2 to inhibit the formation of LD. Our findings suggested that H2 S modified Hrd1 S-sulfhydration at Cys115 to reduce the accumulation of LDs in cardiac tissues of db/db mice.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Miocardio/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Biomarcadores , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas/diagnóstico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Pruebas de Función Cardíaca , Hiperglucemia , Hiperlipidemias , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Procesamiento Proteico-Postraduccional , Proteoma , Proteómica/métodos , Ubiquitina-Proteína Ligasas/genética
3.
J Cell Mol Med ; 24(16): 9362-9377, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32633463

RESUMEN

Muscle atrophy occurs in many pathological states, including cancer, diabetes and sepsis, whose results primarily from accelerated protein degradation and activation of the ubiquitin-proteasome pathway. Expression of Muscle RING finger 1 (MuRF1), an E3 ubiquitin ligase, was increased to induce the loss of muscle mass in diabetic condition. However, hydrogen sulphide (H2 S) plays a crucial role in the variety of physiological functions, including antihypertension, antiproliferation and antioxidant. In this study, db/db mice and C2C12 myoblasts treated by high glucose and palmitate and oleate were chose as animal and cellular models. We explored how exogenous H2 S attenuated the degradation of skeletal muscle via the modification of MuRF1 S-sulfhydration in db/db mice. Our results show cystathionine-r-lyase expression, and H2 S level in skeletal muscle of db/db mice was reduced. Simultaneously, exogenous H2 S could alleviate ROS production and reverse expression of ER stress protein markers. Exogenous H2 S could decrease the ubiquitination level of MYOM1 and MYH4 in db/db mice. In addition, exogenous H2 S reduced the interaction between MuRF1 with MYOM1 and MYH4 via MuRF1 S-sulfhydration. Based on these results, we establish that H2 S prevented the degradation of skeletal muscle via MuRF1 S-sulfhydration at the site of Cys44 in db/db mice.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Regulación de la Expresión Génica/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/prevención & control , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Gasotransmisores/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteolisis , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Am J Physiol Endocrinol Metab ; 317(2): E284-E297, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31184932

RESUMEN

Hydrogen sulfide (H2S), a gaseous molecule, is involved in modulating multiple physiological functions, such as antioxidant, antihypertension, and the production of polysulfide cysteine. H2S may inhibit reactive oxygen species generation and ATP production through modulating respiratory chain enzyme activities; however, the mechanism of this effect remains unclear. In this study, db/db mice, neonatal rat cardiomyocytes, and H9c2 cells treated with high glucose, oleate, and palmitate were used as animal and cellular models of type 2 diabetes. The mitochondrial respiratory rate, respiratory chain complex activities, and ATP production were decreased in db/db mice compared with those in db/db mice treated with exogenous H2S. Liquid chromatography with tandem mass spectrometry analysis showed that the acetylation level of proteins involved in the mitochondrial respiratory chain were increased in the db/db mice hearts compared with those with sodium hydrosulfide (NaHS) treatment. Exogenous H2S restored the ratio of NAD+/NADH, enhanced the expression and activity of sirtuin 3 (SIRT3) and decreased mitochondrial acetylation level in cardiomyocytes under hyperglycemia and hyperlipidemia. As a result of SIRT3 activation, acetylation of the respiratory complexe enzymes NADH dehydrogenase 1 (ND1), ubiquinol cytochrome c reductase core protein 1, and ATP synthase mitochondrial F1 complex assembly factor 1 was reduced, which enhanced the activities of the mitochondrial respiratory chain activity and ATP production. We conclude that exogenous H2S plays a critical role in improving cardiac mitochondrial function in diabetes by upregulating SIRT3.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo I de Transporte de Electrón/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , ATPasas de Translocación de Protón Mitocondriales/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sirtuina 3/metabolismo , Acetilación/efectos de los fármacos , Animales , Animales Recién Nacidos , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , NAD/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
5.
Exp Cell Res ; 358(2): 171-181, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28633902

RESUMEN

Hyperhomocysteinemia (HHcy, high homocysteine) induces the injury of endothelial cells (ECs). Hydrogen sulfide (H2S) protects ECs and inhibits the activation of platelets. Calcium-sensing receptor (CaSR) regulates the production of endogenous H2S. However, whether CaSR inhibits the injury of ECs and the activation of platelets by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H2S)/H2S pathway in hyperhomocysteinemia has not been previously investigated. Here, we tested the ultrastructure alterations of ECs and platelets, the changes in the concentration of serum homocysteine and the parameters of blood of hyperhomocysteinemia rats were measured. The aggregation rate and expression of P-selectin of platelets were assessed. Additionally, the expression levels of CaSR and CSE in the aorta of rats were examined by western blotting. The mitochondrial membrane potential and the production of reactive oxygen species (ROS) were measured; the expression of phospho-calmodulin kinases II (p-CaMK II) and Von Willebrand Factor (vWF) of cultured ECs from rat thoracic aortas were measured. We found that the aggregation rate and the expression of P-selectin of platelets increased, and the expression of CaSR and CSE decreased in HHcy rats. In the ECs of HHcy group, the ROS production increased and the mitochondrial membrane potential decreased markedly, the expression of CSE and the p-CaMK II increased after treatment with CaSR agonist while decreased upon administration of U73122 (PLC-specific inhibitor) and 2-APB (IP3 Receptor inhibitor). CaSR agonist or NaHS significantly reversed the ECs injured and platelet aggregation caused by hyperhomocysteinemia. Our results demonstrate that CaSR regulates the endogenous CSE/H2S pathway to inhibit the activation of platelets which concerts the protection of ECs in hyperhomocysteinemia.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hiperhomocisteinemia/metabolismo , Activación Plaquetaria , Receptores Sensibles al Calcio/metabolismo , Animales , Células Cultivadas , Masculino , Activación Plaquetaria/efectos de los fármacos , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/farmacología
6.
J Cell Mol Med ; 21(12): 3190-3203, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28608965

RESUMEN

Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H2 S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 µM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 µM NaHS was used as an exogenous H2 S donor. Firstly, we demonstrated that high glucose and palmitate decreased H2 S production and CSE expression in RAECs. Then, the antioxidative effect of H2 S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H2 S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H2 S decreased mitochondrial fragments and significantly reduced the expression of p-Drp-1/Drp-1 and Fis1 compared to high-glucose and high-palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H2 S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H2 S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H2 S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H2 S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication.


Asunto(s)
Glucosa/antagonistas & inhibidores , Sulfuro de Hidrógeno/farmacología , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Ácido Palmítico/antagonistas & inhibidores , Sulfuros/farmacología , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , GTP Fosfohidrolasas , Regulación de la Expresión Génica , Glucosa/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Ácido Palmítico/farmacología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sulfuros/química , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Am J Physiol Endocrinol Metab ; 312(3): E190-E203, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27998959

RESUMEN

The upregulation of reactive oxygen species (ROS) is a primary cause of cardiomyocyte apoptosis in diabetes cardiomyopathy (DCM). Mitofusin-2 (Mfn-2) is a key protein that bridges the mitochondria and endoplasmic reticulum (ER). Hydrogen sulfide (H2S)-mediated cardioprotection is related to antioxidant effects. The present study demonstrated that H2S inhibited the interaction between the ER and mitochondrial apoptotic pathway. This study investigated cardiac function, ultrastructural changes in the ER and mitochondria, apoptotic rate using TUNEL, and the expression of ER stress-associated proteins and mitochondrial apoptotic proteins in cardiac tissues in STZ-induced type I diabetic rats treated with or without NaHS (donor of H2S). Mitochondria of cardiac tissues were isolated, and MPTP opening and cytochrome c (cyt C) and Mfn-2 expression were also detected. Our data showed that hyperglycemia decreased the cardiac function by ultrasound cardiogram, and the administration of exogenous H2S ameliorated these changes. We demonstrated that the expression of ER stress sensors and apoptotic rates were elevated in cardiac tissue of DCM and cultured H9C2 cells, but the expression of these proteins was reduced following exogenous H2S treatment. The expression of mitochondrial apoptotic proteins, cyt C, and mPTP opening was decreased following treatment with exogenous H2S. In our experiment, the expression and immunofluorescence of Mfn-2 were both decreased after transfection with Mfn-2-siRNA. Hyperglycemia stimulated ER interactions and mitochondrial apoptotic pathways, which were inhibited by exogenous H2S treatment through the regulation of Mfn-2 expression.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Gasotransmisores/farmacología , Sulfuro de Hidrógeno/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Animales , Glucemia/metabolismo , Western Blotting , Citocromos c/efectos de los fármacos , Citocromos c/metabolismo , Cardiomiopatías Diabéticas , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , GTP Fosfohidrolasas , Corazón/efectos de los fármacos , Corazón/fisiopatología , Etiquetado Corte-Fin in Situ , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Sulfuros/farmacología
8.
Cell Physiol Biochem ; 43(3): 1168-1187, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28977784

RESUMEN

BACKGROUND/AIM: Autophagy plays an important role in cellular homeostasis through the disposal and recycling of cellular components. Hydrogen sulphide (H2S) is the third endogenous gas that has been shown to confer cardiac protective effects. Given the regulation of autophagy in cardioprotection, this study aimed to investigate the protective effects of H2S via autophagy during high glucose treatment. METHODS: This study investigated the content of H2S in the plasma as well as myocardial, ultrastructural changes in mitochondria and autophagosomes. This study also investigated the apoptotic rate using Hoechst/PI as well as expression of autophagy-associated proteins and mitochondrial apoptotic proteins in H9C2 cells treated with or without GYY4137. Mitochondria of cardiac tissues were isolated and RCR and ADP/O were also detected. AMPK knockdown was performed with siRNA transfection. RESULTS: In a STZ-induced diabetic model, NaHS treatment not only increased the expression of p-AMPK in diabetic group but further activated cell autophagy. Following 48h high glucose, autophagosomes and cell viability were reduced. The present results showed that autophagy could be induced by H2S, which was verified by autophagic ultrastructural observation and LC3-I/LC3-II conversion. In addition, the mitochondrial membrane potential (MMP) was significantly decreased. The expressions levels of autophagic-related proteins were significantly elevated. Moreover, H2S activated the AMPK/rapamycin (mTOR) signalling pathway. CONCLUSIONS: Our findings demonstrated that H2S decreases oxidative stress and protects against mitochondria injury, activates autophagy, and eventually leads to cardiac protection via the AMPK/mTOR pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Cardiotónicos/farmacología , Transducción de Señal/efectos de los fármacos , Sulfuros/farmacología , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucemia/análisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Glucosa/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Estreptozocina/toxicidad , Serina-Treonina Quinasas TOR/metabolismo , Función Ventricular/efectos de los fármacos
9.
Exp Cell Res ; 347(1): 184-191, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27502588

RESUMEN

Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H2S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H2S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H2S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H2S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca(2+)]i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H2S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21(Cip/WAK-1) and Calponin decreased. The CaSR agonist or exogenous H2S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H2S is related to the PLC-IP3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine.


Asunto(s)
Homocisteína/farmacología , Sulfuro de Hidrógeno/farmacología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Receptores Sensibles al Calcio/metabolismo , Adolescente , Animales , Bromodesoxiuridina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cistationina gamma-Liasa/metabolismo , Humanos , Indoles/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Naftalenos/farmacología , Fenotipo , Ratas , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismo
10.
Cell Physiol Biochem ; 36(3): 917-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26088607

RESUMEN

BACKGROUND: Oxidative stress inducing hyperglycemia and high glucose play an important role in the development of cardiac fibrosis associated with diabetic cardiomyopathy. The endogenous gasotransmitter hydrogen sulfide (H2S) can act in a cytoprotective manner. However, whether H2S could inhibit the fibrotic process is unclear. The purpose of our study was to examine the role of H2S in the development and underlying mechanisms behind diabetic cardiomyopathy. METHODS: Diabetic cardiomyopathy was induced in rats by injection of streptozotocin (STZ). Cardiac fibrosis and proliferation of rat neonatal cardiac fibroblasts were induced by hyperglycemia and high glucose. We tested the effects of GYY4137 (a slow-releasing H2S donor), NaHS (an exogenous H2S donor) and NADPH oxidase 4 (NOX4) siRNA on reactive oxygen species (ROS) production, MMP-2,9, cystathionine-γ-lyase (CSE), NOX4, and extracellular signal-regulated kinase 1/2 (ERK1/2) to reveal the effects of H2S on the cardiac fibrosis of diabetic cardiomyopathy. RESULT: In vivo, NaHS treatment inhibited hyperglycemia-induced expression of type I and III collagen, MMP-2 and MMP-9 in diabetic hearts. Rat neonatal cardiac fibroblast migration and cell survival were inhibited by administration of GYY4137. NOX4 expression was increased by hyperglycemia and high glucose, but was reduced in cardiac fibroblasts treated by NaHS and GYY4137. ROS production, ERK1/2 phosphorylation and MMP-2 and 9 expression were decreased in rat neonatal cardiac fibroblasts treated with GYY4137 and NOX4 siRNA. CONCLUSION: The present study shows that enhanced NOX4 expression results in cardiac fibrosis through ROS-ERK1/2-MAPkinase-dependent mechanisms in diabetic cardiomyopathy. NOX4 could be an important target for H2S to regulate redox homeostasis in cardiac fibrosis of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Sulfuro de Hidrógeno/farmacología , Hiperglucemia/tratamiento farmacológico , NADPH Oxidasas/antagonistas & inhibidores , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucosa/antagonistas & inhibidores , Glucosa/farmacología , Hiperglucemia/inducido químicamente , Hiperglucemia/genética , Hiperglucemia/patología , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Morfolinas/farmacología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Compuestos Organotiofosforados/farmacología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Estreptozocina , Sulfuros/farmacología
11.
Cell Physiol Biochem ; 35(1): 38-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25547907

RESUMEN

BACKGROUND: Diabetic encephalopathy is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations ([Ca(2+)]i) at its onset. The calcium sensing receptor (CaSR) is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic encephalopathy remains unclear. METHODS: In this study, diabetic rats were modeled by STZ (50 mg/kg). At the end of 4, 8 and 12 weeks, the CaSR expression in hippocampus was analyzed by Western blot. In neonatal rat hippocampal neurons, the [Ca(2+)]i was detected by laser scanning confocal microscopy, the production of reactive oxygen species (ROS) in mitochondria, the level of NO and the mitochondrial transmembrane potential were measured by MitoSOX, DAF-FM and JC-1, respectively. RESULTS: Our results showed in hippocampal neurons treated with high glucose, CaSR regulated [Ca(2+)]i through the PLC-IP3 pathway. CaSR expression was decreased and was involved in the changes in [Ca(2+)]i. Mitochondrial membrane potential, NO release and expression of p-eNOS decreased, while the production of ROS in mitochondria increased. CONCLUSION: Down-regulation of CaSR expression was accompanied by neuronal injury, calcium disturbance, increased ROS production and decreased release of NO. Up-regulation of CaSR expression attenuated these changes through a positive compensatory protective mechanism to inhibit and delay diabetic encephalopathy in rats.


Asunto(s)
Diabetes Mellitus Experimental/patología , Neuronas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Hipocampo/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Neuritas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Estreptozocina/toxicidad
12.
Cell Physiol Biochem ; 35(4): 1582-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25824457

RESUMEN

AIMS: Hydrogen sulfide (H2S) inhibits the proliferation of vascular smooth muscle cells (VSMCs). However, how cystathionine-gamma-lyase (CSE), a major enzyme that produces H2S, is regulated remains unknown. Whether calcium-sensing receptor (CaSR) inhibits the proliferation of VSMCs by regulating the endogenous CSE/H2S pathway in diabetic rat has not been previously investigated. METHODS AND RESULTS: The morphological and ultrastructure alterations were tested by transmission electron microscopy, changes in the H2S concentration and the relaxation of the mesenteric secondary artery loop of diabetic rats were determined by Multiskan spectrum microplate spectrophotometer and isometric force transducer. Additionally, the expression levels of CaSR, CSE and Cyclin D1 in the mesenteric arteries of rats were examined by western blotting. The intracellular calcium concentration, the expression of p-CaMK II (phospho-calmodulin kinases II), CSE activity, the concentration of endogenous H2S and the proliferation of cultured VSMCs from rat thoracic aortas were measured by using confocal microscope, western blotting, microplate spectrophotometer, MTT and BrdU, respectively. The VSMC layer thickened, the H2S concentration dropped, the relaxation of the mesenteric secondary artery rings weakened, and the expression of CaSR and CSE decreased whereas the expression of Cyclin D1 increased in diabetic rats compared with the control group. The [Ca(2+)]i of VSMCs increased upon treatment with CaSR agonists (10 µM Calindol and 2.5 mM CaCl2), while it decreased upon administration of calhex231, U73122 and 2-APB. The expression of p-CaMK II and CSE increased upon treatment with CaSR agonists in VSMCs. CSE activity and the endogenous H2S concentration decreased in response to high glucose, while it increased with treatment of CaSR agonists. The proliferation rate increased in response to high glucose, and CaSR agonists or NaHS significantly reversed the proliferation of VSMCs caused by high glucose. CONCLUSIONS: Our results demonstrated that CaSR regulated the endogenous CSE/H2S pathway to inhibit the proliferation of VSMCs in both diabetic and high glucose models.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cistationina gamma-Liasa/metabolismo , Diabetes Mellitus Experimental/patología , Sulfuro de Hidrógeno/toxicidad , Receptores Sensibles al Calcio/metabolismo , Animales , Aorta Torácica/citología , Benzamidas/farmacología , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclohexilaminas/farmacología , Cistationina gamma-Liasa/genética , Diabetes Mellitus Experimental/metabolismo , Estrenos/farmacología , Glucosa/farmacología , Indoles/farmacología , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Naftalenos/farmacología , Pirrolidinonas/farmacología , Ratas , Ratas Wistar , Receptores Sensibles al Calcio/agonistas , Receptores Sensibles al Calcio/genética
13.
Mol Cell Biochem ; 399(1-2): 189-200, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25376739

RESUMEN

Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 µmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.


Asunto(s)
Cardiotónicos/farmacología , Hiperhomocisteinemia/tratamiento farmacológico , Mitocondrias Cardíacas/efectos de los fármacos , Sulfuros/farmacología , Animales , Apoptosis , Células Cultivadas , Evaluación Preclínica de Medicamentos , Cardiopatías/prevención & control , Hiperhomocisteinemia/complicaciones , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
14.
Cell Physiol Biochem ; 33(3): 557-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603056

RESUMEN

AIMS: Calcium-sensing receptor (CaR) acts as a G protein coupled receptor that mediates the increase of the intracellular Ca(2+) concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM) secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO). METHODS AND RESULTS: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca(2+)]i). Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9). Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. CONCLUSIONS: Our results are the first report that CaR plays an important role in Ca(2+) signaling involved in cardiac fibrosis through the phospholipase C- inositol 3,4,5 phosphate (PLC-IP3) pathway.


Asunto(s)
Proliferación Celular , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miocardio/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Fibroblastos/patología , Isoproterenol/efectos adversos , Isoproterenol/farmacología , Miocardio/patología , Ratas , Ratas Wistar
15.
Int J Biol Sci ; 20(2): 585-605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169591

RESUMEN

Sirtuin 5 (SIRT5), localized in the mitochondria, has been identified as a protein desuccinylase and demalonylase in the mitochondria since the depletion of SIRT5 boosted the global succinylation and malonylation of mitochondrial proteins. We investigated the role of SIRT5 in diabetic cardiomyopathy (DCM) and identified the mechanism regarding lysine demalonylation in this process. Wild-type and SIRT5 knockout mice were induced with DCM, and primary cardiomyocytes and cardiac fibroblasts extracted from wild-type and SIRT5 knockout mice were subjected to high glucose (HG). SIRT5 deficiency exacerbated myocardial injury in DCM mice, aggravated HG-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes, and intensified cardiomyocyte senescence, pyroptosis, and DNA damage. DCM-induced SIRT5 loss diminished glutathione S-transferase P (GSTP1) protein stability, represented by significantly increased lysine malonylation (Mal-Lys) modification of GSTP1. SIRT5 overexpression alleviated DCM-related myocardial injury, which was reversed by GSTP1 knockdown. Reduced SIRT5 transcription in DCM resulted from the downregulation of SPI1. SPI1 promoted the transcription of SIRT5, thereby ameliorating DCM-associated myocardial injury. However, SIRT5 deletion resulted in a significant reversal of the protective effect of SPI1. These observations suggest that SPI1 activates SIRT5 transcriptionally to mediate GSTP1 Mal-Lys modification and protein stability, thus ameliorating DCM-associated myocardial injury.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Sirtuinas , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Glutatión Transferasa , Lisina/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Piroptosis , Sirtuinas/genética , Sirtuinas/metabolismo
16.
Free Radic Biol Med ; 216: 118-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479633

RESUMEN

Anomalous vascular endothelium significantly contributes to various cardiovascular diseases. VE-cadherin plays a vital role in governing the endothelial barrier. Krüppel-like factor 4(KLF4), as a transcription factor, which binds the VE-cadherin promoter and enhances its transcription. Tumor necrosis factor receptor-associated factor 7 (TRAF7) is an E3 ubiquitin ligase that has been shown to modulate the degradation of KLF4. H2S can covalently modify cysteine residues on proteins through S-sulfhydration, thereby influencing the structure and functionality of the target protein. However, the role of S-sulfhydration on endothelial barrier integrity remains to be comprehensively elucidated. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates endothelial integrity and its underlying mechanism. In this study, we observed that protein S-sulfhydration was reduced in the endothelium during diabetes and TRAF7 was the main target. Overexpression of TRAF7-Cys327 mutant could mitigate the endothelial barrier damage by weakening TRAF7 interaction with KLF4 and reducing ubiquitination degradation of KLF4. In conclusion, our research demonstrates that H2S plays a pivotal role in regulating S-sulfhydration of TRAF7 at Cys327. This regulation effectively inhibits the ubiquitin-mediated degradation of KLF4, resulting in an upregulation of VE-cadherin levels. This molecular mechanism contributes to the prevention of endothelial barrier damage.


Asunto(s)
Diabetes Mellitus , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Ubiquitinación , Regulación de la Expresión Génica , Endotelio Vascular/metabolismo , Ubiquitina/metabolismo , Diabetes Mellitus/metabolismo
17.
Cell Physiol Biochem ; 31(4-5): 728-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23711498

RESUMEN

AIMS: Alterations in calcium homeostasis in the intracellular endo/sarcoplasmic reticulum (ER/SR) and mitochondria of cardiomyocytes cause cell death via the SR and mitochondrial apoptotic pathway, contributing to ventricular dysfunction. However, the role of the calcium-sensing receptor (CaR) in cardiac hypertrophy and heart failure has not been studied. This study examined the possible involvement of CaR in the SR and mitochondrial apoptotic pathway in an experimental model of heart failure. METHODS AND RESULTS: In Wistar rats, cardiac hypertrophy and heart failure were induced by subcutaneous injection of isoproterenol (Iso). Calindol, an activator of CaR, and calhex231, an inhibitor of CaR, were administered by caudal vein injection. Cardiac remodeling and left ventricular function were then analyzed in these rats. After 2, 4, 6 and 8 weeks after the administration of Iso, the rats developed cardiac hypertrophy and failure. The cardiac expression of ER chaperones and related apoptotic proteins was significantly increased in the failing hearts. Furthermore, the expression of ER chaperones and the apoptotic rate were also increased with the administration of calindol, whereas the expression of these proteins was reduced with the treatment of calhex231. We also induced cardiac hypertrophy and failure via thoracic aorta constriction (TAC) in mice. After 2 and 4 weeks of TAC, the expression of ER chaperones and apoptotic proteins were increased in the mouse hearts. Furthermore, Iso induced ER stress and apoptosis in cultured cardiomyocytes, while pretreatment with calhex231 prevented ER stress and protected the myocytes against apoptosis. To further investigate the effect of CaR on the concentration of intracellular calcium, the calcium concentration in the SR and mitochondria was determined with Fluo-5N and x-rhod-1 and the mitochondrial membrane potential was examined with JC-1 using laser confocal microscopy. After treatment with Iso for 48 hours, activation of CaR reduced [Ca(2+)]SR, increased [Ca(2+)]m, decreased the mitochondrial membrane potential, increased the expression of ER stress chaperones and related apoptotic proteins, and induced the release of cytochrome c from the mitochondria. CONCLUSIONS: Our results demonstrated that CaR activation caused Ca(2+) release from the SR into the mitochondria and induced cardiomyocyte apoptosis through the SR and mitochondrial apoptotic pathway in failing hearts.


Asunto(s)
Apoptosis , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Receptores Sensibles al Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiología , Benzamidas/farmacología , Calcio/metabolismo , Cardiomegalia/patología , Ciclohexilaminas/farmacología , Citocromos c/metabolismo , Insuficiencia Cardíaca/patología , Indoles/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoproterenol/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo , Naftalenos/farmacología , Ratas , Ratas Wistar , Receptores Sensibles al Calcio/agonistas , Receptores Sensibles al Calcio/antagonistas & inhibidores
18.
Mol Cell Biochem ; 381(1-2): 41-50, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23660955

RESUMEN

Oxidative stress is a crucial factor inducing cardiomyocyte apoptosis due to cardiac hypertrophy. Additional evidence has revealed that H2S plays an antioxidant role and is cytoprotective. Hence, we aimed to elucidate whether H2S prevents cardiomyocyte apoptosis due to cardiac hypertrophy via its antioxidant function. The cardiac hypertrophy model was obtained by injecting a high dose of isoproterenol (ISO) subcutaneously, and the hemodynamic parameters were measured in groups that received either ISO or ISO with the treatment of NaHS. TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling) and EM (electron microscopy) experiments were performed to determine the occurrence of apoptosis in heart tissues. The expression of caspase-3 protein in the cytoplasm and NADPH oxidase 4 (NOX4), and cytochrome c (cyt c) proteins in the mitochondria were analyzed using Western blotting. In contrast, to determine whether ISO-induced apoptosis in the cultured cardiomyocytes may be related to oxidative stress, JC-1 and MitoSOX assays were performed to detect the mitochondrial membrane potential and reactive oxygen species (ROS) production in the mitochondria. Exogenous H2S was found to ameliorate cardiac function. The histological observations obtained from TUNEL and EM demonstrated that treatment with NaHS inhibited the occurrence of cardiac apoptosis and improved cardiac structure. Moreover, H2S reduced the expression of the cleaved caspase-3, NOX4 and the leakage of cyt c from the mitochondria to the cytoplasm. We also observed that exogenous H2S could maintain the mitochondrial membrane potential and reduce ROS production in the mitochondria. Therefore, H2S reduces oxidative stress due to cardiac hypertrophy through the cardiac mitochondrial pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Cardiomegalia/patología , Cardiotónicos/farmacología , Sulfuro de Hidrógeno/farmacología , Miocitos Cardíacos/patología , Animales , Animales Recién Nacidos , Bencimidazoles/metabolismo , Carbocianinas/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/fisiopatología , Caspasa 3/metabolismo , Citocromos c/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescencia , Pruebas de Función Cardíaca , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hemodinámica/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Isoproterenol , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocardio/patología , Miocardio/ultraestructura , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , Fenantridinas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
19.
Cell Death Discov ; 9(1): 394, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875467

RESUMEN

Excessive ROS accumulation contributes to cardiac injury in type 2 diabetes mellitus. Hydrogen sulfide (H2S) is a vital endogenous gasotransmitter to alleviate cardiac damage in diabetic cardiomyopathy (DCM). However, the underlying mechanisms remain unclear. In this study, we investigated the effects of NaHS administration in db/db mice via intraperitoneal injection for 20 weeks and the treatment of high glucose (HG), palmitate (PA) and NaHS in HL-1 cardiomyocytes for 48 h, respectively. H2S levels were decreased in hearts of db/db mice and HL-1 cardiomyocytes exposed to HG and PA, which were restored by NaHS. Exogenous H2S activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/glutathione (GSH) pathway, suppressed ferroptosis and mitigated mitochondrial apoptosis in db/db mice. However, these effects were abrogated after Nrf2 knockdown. NaHS treatment elevated the ubiquitination level of Kelch-like ECH-associated protein (Keap1) by preserving its E3 ligase synoviolin (Syvn1), resulting in Nrf2 nuclear translocation. H2S facilitated the sulfhydration of Syvn1-cys115 site, a post-translational modification. Transfecting Syvn1 C115A in cardiomyocytes exposed to HG and PA partially attenuated the effects of NaHS on Nrf2 and cell death. Our findings suggest that exogenous H2S regulates Nrf2/GPx4/GSH pathway by promoting the Syvn1-Keap1 interaction to reduce ferroptosis and mitochondrial apoptosis in DCM.

20.
J Cachexia Sarcopenia Muscle ; 14(6): 2719-2732, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37899701

RESUMEN

BACKGROUND: Diabetic cardiomyopathy, a distinctive complication of diabetes mellitus, has been correlated with the presence of intracellular lipid deposits. However, the intricate molecular mechanisms governing the aberrant accumulation of lipid droplets within cardiomyocytes remain to be comprehensively elucidated. METHODS: Both obese diabetic (db/db) mice and HL-1 cells treated with 200 µmol/L palmitate and 200 µmol/L oleate were used to simulate type 2 diabetes conditions. Transmission electron microscopy is employed to assess the size and quantity of lipid droplets in the mouse hearts. Transcriptomics analysis was utilized to interrogate mRNA levels. Lipidomics and ubiquitinomics were employed to explore the lipid composition alterations and proteins participating in ubiquitin-mediated degradation in mice. Clinical data were collected from patients with diabetes-associated cardiomyopathy and healthy controls. Western blot analysis was conducted to assess the levels of proteins linked to lipid metabolism, and the biotin-switch assay was employed to quantify protein cysteine S-sulfhydration levels. RESULTS: The administration of H2 S donor, NaHS, effectively restored hydrogen sulfide levels in both the cardiac tissue and plasma of db/db mice (+7%, P < 0.001; +5%, P < 0.001). Both db/db mice (+210%, P < 0.001) and diabetic patients (+83%, P = 0.22, n = 5) exhibit elevated plasma triglyceride levels. Treatment with GYY4137 effectively lowers triglyceride levels in db/db mice (-43%, P = 0.007). The expression of cystathionine gamma-lyase and HMG-CoA reductase degradation protein 1 (SYVN1) was decreased in db/db mice compared with the wild-type mice (cystathionine gamma-lyase: -31%, P = 0.0240; SYVN1: -35%, P = 0.01), and NaHS-treated mice (SYVN1: -31%, P = 0.03). Conversely, the expression of sterol regulatory element-binding protein 1 (SREBP1) was elevated (+91%, P = 0.007; +51%, P = 0.03 compared with control and NaHS-treated mice, respectively), along with diacylglycerol O-acyltransferase 1 (DGAT1) (+95%, P = 0.001; +35%, P = 0.02) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) (+88%, P = 0.01; +22%, P = 0.32). Exogenous H2 S led to a reduction in lipid droplet formation (-48%, P < 0.001), restoration of SYVN1 expression, modification of SYVN1's S-sulfhydration status and enhancement of SREBP1 ubiquitination. Overexpression of SYVN1 mutated at Cys115 decreased SREBP1 ubiquitination and increased the number of lipid droplets. CONCLUSIONS: Exogenous H2 S enhances ubiquitin-proteasome degradation of SREBP1 and reduces its nuclear translocation by modulating SYVN1's cysteine S-sulfhydration. This pathway limits lipid droplet buildup in cardiac myocytes, ameliorating diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Humanos , Ratones , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Lípidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Triglicéridos/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA