Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Environ Health Res ; : 1-15, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825775

RESUMEN

The widely believed Helicobacter pylori infection has never explained the birth-cohort phenomenon of peptic ulcers. Although numerous studies have observed that environmental factors are associated with peptic ulcers, their role in the disease has yet to be identified. A new etiological theory proposed that environmental factors cause peptic ulcers via inducing psychological stress. Starting from this etiology, an integration of the mortality rates caused by social and natural environmental factors reproduced a representative fluctuation curve in the birth-cohort phenomenon, where a causal role of environmental factors in peptic ulcers was hidden. The reproduced fluctuation curve revealed that multiple environmental factors caused the birth-cohort phenomenon by Superposition Mechanism, and the causal role of each individual environmental factor surfaced if the fluctuation curves in the birth-cohort phenomenon were properly differentiated. A full understanding of the birth-cohort phenomenon highlights the importance of environmental management in improving clinical outcomes, and suggests that the Superposition Mechanism is an indispensable methodological concept for life science and medicine.

2.
J Immunol ; 207(9): 2359-2373, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561230

RESUMEN

Inflammatory macrophages have been implicated in many diseases, including rheumatoid arthritis and inflammatory bowel disease. Therefore, targeting macrophage function and activation may represent a potential strategy to treat macrophage-associated diseases. We have previously shown that IFN-γ-induced differentiation of human M0 macrophages toward proinflammatory M1 state rendered them highly susceptible to the cytocidal effects of second mitochondria-derived activator of caspases mimetics (SMs), antagonist of the inhibitors of apoptosis proteins (IAPs), whereas M0 and anti-inflammatory M2c macrophages were resistant. In this study, we investigated the mechanism governing SM-induced cell death during differentiation into M1 macrophages and in polarized M1 macrophages. IFN-γ stimulation conferred on M0 macrophages the sensitivity to SM-induced cell death through the Jak/STAT, IFN regulatory factor-1, and mammalian target of rapamycin complex-1 (mTORC-1)/ribosomal protein S6 kinase pathways. Interestingly, mTORC-1 regulated SM-induced cell death independent of M1 differentiation. In contrast, SM-induced cell death in polarized M1 macrophages is regulated by the mTORC-2 pathway. Moreover, SM-induced cell death is regulated by cellular IAP (cIAP)-2, receptor-interacting protein kinase (RIPK)-1, and RIPK-3 degradation through mTORC activation during differentiation into M1 macrophages and in polarized M1 macrophages. In contrast to cancer cell lines, SM-induced cell death in M1 macrophages is independent of endogenously produced TNF-α, as well as the NF-κB pathway. Collectively, selective induction of cell death in human M1 macrophages by SMs may be mediated by cIAP-2, RIPK-1, and RIPK-3 degradation through mTORC activation. Moreover, blocking cIAP-1/2, mTORC, or IFN regulatory factor-1 may represent a promising therapeutic strategy to control M1-associated diseases.


Asunto(s)
Artritis Reumatoide/inmunología , Biomimética/métodos , Enfermedades Inflamatorias del Intestino/inmunología , Macrófagos/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Muerte Celular , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Factor 1 Regulador del Interferón/metabolismo , Proteínas Mitocondriales/genética , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34551966

RESUMEN

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Asunto(s)
Interferón gamma/biosíntesis , Macrófagos/efectos de los fármacos , Poli I-C/farmacología , COVID-19/inmunología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/inmunología , Macrófagos/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/inmunología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/inmunología , Receptor Toll-Like 4/agonistas
4.
BMC Infect Dis ; 21(1): 655, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233649

RESUMEN

BACKGROUND: Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. METHODS: We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student's t-test from at least four independent experiments. RESULTS: We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. CONCLUSIONS: We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy.


Asunto(s)
Apoptosis/genética , Proteínas Fluorescentes Verdes , Infecciones por VIH , Macrófagos , ARN Interferente Pequeño , Linfocitos T CD4-Positivos/virología , Estudio de Asociación del Genoma Completo , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Linfocitos T
5.
RNA Biol ; 17(6): 755-764, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32050839

RESUMEN

Small interfering RNA (siRNA) is a critical loss-of-function tool for elucidating the role of genes in biomedical studies. The effective use of siRNA needs transfection technology that delivers siRNA into the correct location of target cells, especially those which are extremely difficult to transfect. Macrophages, which play an important role in the pathogenesis of many diseases, are known to be extremely hard to transfect. Thus, to elucidate the functions of genes in human macrophage biology, it is essential to devise technology for efficient siRNA transfection. However, a fast and efficient method for siRNA transfection in primary human macrophages has not been reported. The siRNA transfection is a tug-of-war between transfection rate and cytotoxicity. A higher transfection rate is generally accompanied with increased cytotoxicity, therefore, choosing a transfection reagent that limits cell death while maintain a desirable transfection rate is important. In this study, we employed auto-analysis function of the IncuCyte® to devise a fast and cost-saving technology for efficient transfection of adherent cells and particularly human macrophages. We show that DharmaFECT3 transfection reagent from Dharmacon was the most efficient in transfecting primary human monocyte-derived macrophages and PMA-differentiated U937 cells, whereas other transfection reagents tested were cytotoxic. This method exhibited approximately 85% transfection efficiency in human macrophages. Moreover, siRNA silencing of Bax with this technique effectively protected primary human macrophages and PMA-differentiated U937 cells against Resveratrol-induced cell death. In addition, this method inherently takes the balance between transfection rate and cytotoxicity of siRNA transfection reagents into consideration.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , ARN Interferente Pequeño/genética , Resveratrol/farmacología , Proteína X Asociada a bcl-2/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Dosificación de Gen , Expresión Génica , Humanos , Macrófagos/citología , Transfección
6.
Water Res ; 253: 121300, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367385

RESUMEN

Landfills are the primary endpoint for the disposal of PFAS-laden waste, which subsequently releases PFAS to the surrounding environments through landfill leachate. Ozone foam fractionation emerges as a promising technology for PFAS removal to address the issue. This study aims to (i) assess the effectiveness of the ozone foam fractionation system to remove PFAS from landfill leachate, and (ii) quantify equilibrium PFAS adsorption onto the gas-water interface of ozone bubbles, followed by a comparison with air foam fractionation. The results show that ozone foam fractionation is effective for PFAS removal from landfill leachate, with more than 90 % long-chain PFAS removed. The identified operating conditions provide valuable insights for industrial applications, guiding the optimization of ozone flow rates (1 L/min), dosing (43 mg/L) and minimizing foamate production (4 % wettability). The equilibrium modelling reveals that the surface excess of air bubbles exceeds that of ozone bubbles by 20-40 % at a corresponding PFAS concentration. However, the overall removal of PFAS from landfill leachate by ozone foam fractionation remains substantial. Notably, ozone foam fractionation generates foamate volumes 2 - 4 times less, resulting in significant cost savings for the final disposal of waste products and reduced site storage requirements.


Asunto(s)
Fluorocarburos , Ozono , Eliminación de Residuos , Contaminantes Químicos del Agua , Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Instalaciones de Eliminación de Residuos
7.
Sci Rep ; 11(1): 22901, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824340

RESUMEN

Macrophages serve as viral reservoirs due to their resistance to apoptosis and HIV-cytopathic effects. We have previously shown that inhibitor of apoptosis proteins (IAPs) confer resistance to HIV-Vpr-induced apoptosis in normal macrophages. Herein, we show that second mitochondrial activator of caspases (SMAC) mimetics (SM) induce apoptosis of monocyte-derived macrophages (MDMs) infected in vitro with a R5-tropic laboratory strain expressing heat stable antigen, chronically infected U1 cells, and ex-vivo derived MDMs from HIV-infected individuals. To understand the mechanism governing SM-induced cell death, we show that SM-induced cell death of primary HIV-infected macrophages was independent of the acquisition of M1 phenotype following HIV infection of macrophages. Instead, SM-induced cell death was found to be mediated by IAPs as downregulation of IAPs by siRNAs induced cell death of HIV-infected macrophages. Moreover, HIV infection caused receptor interacting protein kinase-1 (RIPK1) degradation which in concert with IAP1/2 downregulation following SM treatment may result in apoptosis of macrophages. Altogether, our results show that SM selectively induce apoptosis in primary human macrophages infected in vitro with HIV possibly through RIPK1. Moreover, modulation of the IAP pathways may be a potential strategy for selective killing of HIV-infected macrophages in vivo.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/patogenicidad , Macrófagos/efectos de los fármacos , Imitación Molecular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Efecto Citopatogénico Viral , Infecciones por VIH/enzimología , Infecciones por VIH/patología , Infecciones por VIH/virología , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Macrófagos/enzimología , Macrófagos/patología , Macrófagos/virología , Fenotipo , Células U937 , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Leukoc Biol ; 110(4): 693-710, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33404106

RESUMEN

The inflammatory and anti-inflammatory Mϕs have been implicated in many diseases including rheumatoid arthritis, multiple sclerosis, and leprosy. Recent studies suggest targeting Mϕ function and activation may represent a potential target to treat these diseases. Herein, we investigated the effect of second mitochondria-derived activator of caspases (SMAC) mimetics (SMs), the inhibitors of apoptosis (IAPs) proteins, on the killing of human pro- and anti-inflammatory Mϕ subsets. We have shown previously that human monocytes are highly susceptible whereas differentiated Mϕs (M0) are highly resistant to the cytocidal abilities of SMs. To determine whether human Mϕ subsets are resistant to the cytotoxic effects of SMs, we show that M1 Mϕs are highly susceptible to SM-induced cell death whereas M2a, M2b, and M2c differentiated subsets are resistant, with M2c being the most resistant. SM-induced cell death in M1 Mϕs was mediated by apoptosis as well as necroptosis, activated both extrinsic and intrinsic pathways of apoptosis, and was attributed to the IFN-γ-mediated differentiation. In contrast, M2c and M0 Mϕs experienced cell death through necroptosis following simultaneous blockage of the IAPs and the caspase pathways. Overall, the results suggest that survival of human Mϕs is critically linked to the activation of the IAPs pathways. Moreover, agents blocking the cellular IAP1/2 and/or caspases can be exploited therapeutically to address inflammation-related diseases.


Asunto(s)
Apoptosis , Inhibidores de Caspasas/farmacología , Polaridad Celular , Macrófagos/citología , Oligopéptidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Polaridad Celular/efectos de los fármacos , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Quinasas Janus/metabolismo , Cinética , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Necroptosis/efectos de los fármacos , Fenotipo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Data Brief ; 19: 1058-1067, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30225279

RESUMEN

In this article, we compiled 13 etiological theories, 15 characteristics, and 81 observations/phenomena of peptic ulcers, reported in reproducible, peer-reviewed studies from the literature, to reflect the historical evolution of studies on peptic ulcers and to provide a multidisciplinary view of this disease. This data was collected during the systematic review of topics on peptic ulcers including genetics, etiology, epidemiology, psychology, anatomy, neurology, bacteriology, pathology, and clinical statistics. The data curated herein was extracted via application of recently published basic theories and methodologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA