RESUMEN
The SARS-CoV-2 Omicron variant is characterized by its high transmissibility, which has caused a worldwide epidemiological event. Yet, it turns ominous once the disease progression degenerates into severe pneumonia and sepsis, presenting a horrendous lethality. To elucidate the alveolar immune or inflammatory landscapes of Omicron critical-ill patients, we performed single-cell RNA-sequencing (scRNA-seq) of bronchoalveolar lavage fluid (BALF) from the patients with critical pneumonia caused by Omicron infection, and analyzed the correlation between the clinical severity scores and different immune cell subpopulations. In the BALF of Omicron critical patients, the alveolar violent myeloid inflammatory environment was determined. ISG15+ neutrophils and CXCL10+ macrophages, both expressed the interferon-stimulated genes (ISGs), were negatively correlated with clinical pulmonary infection score, while septic CST7+ neutrophils and inflammatory VCAN+ macrophages were positively correlated with sequential organ failure assessment. The percentages of ISG15+ neutrophils were associated with more protective alveolar epithelial cells, and may reshape CD4+ T cells to the exhaustive phenotype, thus preventing immune injuries. The CXCL10+ macrophages may promote plasmablast/plasma cell survival and activation as well as the production of specific antibodies. As compared to the previous BALF scRNA-seq data from SARS-CoV-2 wild-type/Alpha critical patients, the subsets of neutrophils and macrophages with pro-inflammatory and immunoregulatory features presented obvious distinctions, suggesting an immune disparity in Omicron variants. Overall, this study provides a BALF single-cell atlas of Omicron critical patients, and suggests that alveolar interferon-responsive neutrophils and macrophages may extricate SARS-CoV-2 Omicron critical patients from the nasty fate of sepsis.
Asunto(s)
Líquido del Lavado Bronquioalveolar , COVID-19 , Macrófagos , Neutrófilos , SARS-CoV-2 , Sepsis , Humanos , COVID-19/inmunología , COVID-19/virología , Neutrófilos/inmunología , Sepsis/inmunología , Sepsis/virología , SARS-CoV-2/inmunología , Masculino , Macrófagos/inmunología , Macrófagos/virología , Femenino , Persona de Mediana Edad , Líquido del Lavado Bronquioalveolar/virología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Anciano , Citocinas/inmunología , Interferones , Enfermedad Crítica , AdultoRESUMEN
The epidermal growth factor receptor (EGFR) has received significant attention as a potential target for glioblastoma (GBM) therapeutics in the past two decades. However, although cetuximab, an antibody that specifically targets EGFR, exhibits a high affinity for EGFR, it has not yet been applied in the treatment of GBM. Antibody-drug conjugates (ADCs) utilize tumor-targeting antibodies for the selective delivery of cytotoxic drugs, resulting in improved efficacy compared to conventional chemotherapy drugs. However, the effectiveness of cetuximab as a targeted antibody for ADCs in the treatment of GBM remains uncertain. In this study, we synthesized AGCM-22, an EGFR-targeted ADC derived from cetuximab, by conjugating it with the tubulin inhibitor monomethyl auristatin E (MMAE) using our Valine-Alanine Cathepsin B cleavable linker. In vitro experiments demonstrated that AGCM-22 effectively inhibited GBM cell proliferation through increased levels of apoptosis and autophagy-related cell death, whereas cetuximab alone had no anti-GBM effects. Additionally, both mouse and human orthotopic tumor models exhibited the selective tumor-targeting efficacy of AGCM-22, along with favorable metabolic properties and superior anti-GBM activity compared to temozolomide (TMZ). In summary, this study presents a novel ADC for GBM therapy that utilizes cetuximab as the tumor-targeting antibody, resulting in effective delivery of the cytotoxic drug payload.
Asunto(s)
Antineoplásicos , Glioblastoma , Inmunoconjugados , Humanos , Animales , Ratones , Cetuximab/farmacología , Preparaciones Farmacéuticas , Glioblastoma/metabolismo , Anticuerpos , Antineoplásicos/uso terapéutico , Receptores ErbB , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Línea Celular Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S.aureus within host cells may cause long-term colonization and clinical failure. Current treatments have poor efficacy in clearing intracellular bacteria. Antibody-antibiotic conjugates (AACs) is a novel strategy for eliminating intracellular bacteria. Herein, we use KRM-1657 as payload of AAC for the first time, and we conjugate it with anti S. aureus antibody via a dipeptide linker (Valine-Alanine) to obtain a novel AAC (ASAK-22). The ASAK-22 exhibits good in vitro pharmacokinetic properties and inhibitory activity against intracellular MRSA, with 100 µg/mL of ASAK-22 capable of eliminating intracellular MRSA to the detection limit. Furthermore, the in vivo results demonstrate that a single administration of ASAK-22 significantly reduces the bacterial burden in the bacteremia model, which is superior to the vancomycin treatment.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inmunoconjugados/química , Inmunoconjugados/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos BALB C , Estructura Molecular , Infecciones Estafilocócicas/tratamiento farmacológico , Relación Estructura-Actividad , Rifamicinas/química , Rifamicinas/farmacologíaRESUMEN
Bronchial asthma is a common chronic airway disease, and long-term management of asthma is the focus and challenge of clinical treatment. Glucocorticoids are often used as the first choice for the treatment of asthma. However, the occurrence of hormone dependence, hormone resistance, and local and systemic adverse reactions caused by hormone application also creates problems for the treatment of asthma. Finding new, safe, and effective therapeutic drugs is an important research direction at present. Icariin is an effective ingredient of the traditional Chinese medicine, Epimedium. It has various biological attributes such as anti-inflammatory and antioxidative activities, and immune regulation. It has high safety and a wide range of clinical applications. Icariin has the characteristics of multitargeted intervention in the treatment of asthma. Here, we review the specific mechanisms of icariin in treating asthma, and icariin is considered a novel therapy in controlling asthma; however, the mechanism is still worth further investigation.
Asunto(s)
Asma , Medicina Tradicional China , Asma/tratamiento farmacológico , Flavonoides , Hormonas , Humanos , Extractos VegetalesRESUMEN
Compound K [C-K; 20-O-(ß-d-glucopyranosyl)-20(S)-protopanaxadiol], as a metabolite of ginsenoside, has been verified to have antitumor effects in various cancers, including non-small cell lung cancer (NSCLC). However, the detailed mechanisms of C-K in NSCLC remain largely unknown. In this study, we aimed to evaluate the effect of C-K on apoptosis and autophagy in NSCLC cells as well as its related mechanisms. According to the results, C-K suppressed the proliferation, and led to G1 phase arrest and apoptosis in A549 and H1975 cells. Subsequently, C-K promoted autophagy, as confirmed by the enhanced rate of cells staining positive with acridine orange, increased levels of LC3II and Beclin-1, and with decreased levels of p62 in A549 and H1975 cells. Moreover, 3-methyladenine (3-MA; an inhibitor of autophagy) effectively suppressed the inhibition of proliferation and apoptosis that was induced with C-K. Finally, C-K treatment promoted the activation of the AMPK-mTOR and c-Jun N-terminal kinase (JNK) signaling pathways. Treatment with compound C (AMPK inhibitor) or SP600125 (JNK inhibitor) significantly restrained the inhibition of proliferation, apoptosis, and autophagy induced with C-K in A549 and H1975 cells. In conclusion, this study demonstrates that C-K promotes autophagy-mediated apoptosis in NSCLC via AMPK-mTOR and JNK signaling pathways.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ginsenósidos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ginsenósidos/química , Ginsenósidos/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Conformación Molecular , Relación Estructura-ActividadRESUMEN
BACKGROUND AND OBJECTIVE: Although massive bleeding is the most life-threatening complication caused by flexible bronchoscopy, data on flexible bronchoscopy-induced massive bleeding are scarce, and the associated clinical characteristics and prognostic factors are unknown. METHODS: This was a multicentre retrospective cohort study of all patients who underwent flexible bronchoscopy in 33 tertiary hospitals from January 2001 to June 2013. The clinical characteristics and outcomes were collected and analysed. RESULTS: A total of 194 patients with massive bleeding were identified among 520 343 patients who underwent flexible bronchoscopy. The average blood loss reached up to 378 mL. The overall incidence and mortality were 0.037% and 0.004%, respectively, and the overall fatality was 10.8%. The risk of massive bleeding induced by therapeutic bronchoscopies was significantly higher than that induced by diagnostic bronchoscopies (incidence: 0.059% vs 0.031%, P < 0.001; mortality: 0.012% vs 0.003%, P < 0.001; fatality: 20% vs 8.4%, P = 0.068). Multivariate analysis showed that age ≥65 years, tracheal bleeding, blood loss ≥500 mL and occurrence of shock were independent factors predicting poor outcome, while emergency surgery was an independent protective factor. Re-bleeding occurred in six patients, resulting in three deaths within a month. CONCLUSION: Flexible bronchoscopy-induced massive bleeding is rare but life-threatening. Age, bleeding location, bleeding volume, circulation condition and emergency surgery were independent prognostic factors.
Asunto(s)
Pérdida de Sangre Quirúrgica , Broncoscopía/efectos adversos , Choque Hemorrágico , Adulto , Anciano , Pérdida de Sangre Quirúrgica/mortalidad , Pérdida de Sangre Quirúrgica/fisiopatología , Volumen Sanguíneo , Broncoscopía/métodos , China/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Choque Hemorrágico/etiología , Choque Hemorrágico/mortalidad , Choque Hemorrágico/cirugíaRESUMEN
Background and Objective: Brachytherapy, a new form of radiation therapy, has been used to treat lung cancer and consists of two main forms of treatment: endobronchial brachytherapy and radioactive seed implantation brachytherapy (RSI-BT), the latter of which is used to treat non-small cell lung cancer (NSCLC). The use of RSI-BT in the treatment of NSCLC at our centre has yielded some positive results. Methods: To more fully consider the context of this application, we conducted a search of PubMed from 2018 to March 5, 2023. The search included a combination of the MeSH terms: "brachytherapy" and "lung neoplasm". Key Content and Findings: The majority of NSCLC patients who received RSI-BT achieved positive benefits. Most patients had a progression-free survival (PFS) of between 12 and 18 months. Additionally, radioactive particle stent implantation as a specific RSI-BT has shown therapeutic potential in the treatment of malignant airway obstruction. With the application of new technologies, RSI-BT will become more precise, efficient and inexpensive. Conclusions: This review demonstrates that RSI-BT can be therapeutic in the treatment of both early and advanced NSCLC with manageable complications. There have also been reports on the combination of RSI-BT with other therapies, but more research is needed on the combination of RSI-BT with them.
RESUMEN
Background: Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology with a poor prognosis, characterized by a lack of effective diagnostic and therapeutic interventions. The role of immunity in the pathogenesis of IPF is significant, yet remains inadequately understood. This study aimed to identify potential key genes in IPF and their relationship with immune cells by integrated bioinformatics analysis and verify by in vivo and in vitro experiments. Methods: Gene microarray data were obtained from the Gene Expression Omnibus (GEO) for differential expression analysis. The differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. By utilizing a combination of three machine learning algorithms, specific genes associated with idiopathic pulmonary fibrosis (IPF) were pinpointed. Then their diagnostic significance and potential co-regulators were elucidated. We further analyzed the correlation between key genes and immune infiltrating cells via single-sample gene set enrichment analysis (ssGSEA). Subsequently, a single-cell RNA sequencing data (scRNA-seq) was used to explore which cell types expressed key genes in IPF samples. Finally, a series of in vivo and in vitro experiments were conducted to validate the expression of candidate genes by western blot (WB), quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC) analysis. Results: A total of 647 DEGs of IPF were identified based on two datasets, including 225 downregulated genes and 422 upregulated genes. They are closely related to biological functions such as cell migration, structural organization, immune cell chemotaxis, and extracellular matrix. CFH and FHL2 were identified as key genes with diagnostic accuracy for IPF by three machine learning algorithms. Analysis using ssGSEA revealed a significant association of both CFH and FHL2 with diverse immune cells, such as B cells and NK cells. Further scRNA-seq analysis indicated CFH and FHL2 were specifically upregulated in human IPF tissues, which was confirmed by in vitro and in vivo experiments. Conclusion: In this study, CFH and FHL2 have been identified as novel potential biomarkers for IPF, with potential diagnostic utility in future clinical applications. Subsequent investigations into the functions of these genes in IPF and their interactions with immune cells may enhance comprehension of the disease's pathogenesis and facilitate the identification of therapeutic targets.
RESUMEN
Acquired bronchobiliary fistula (ABBF) is very rare among the complications that occur in patients with hepatocellular carcinoma (HCC) after treatment. Although surgery and drainage have been the main methods for treating ABBF for a long time, they are not entirely suitable for patients with refractory ABBF resulting from HCC therapy. In this study, we present four cases of ABBF caused by HCC treatment, who were treated using selective bronchial occlusion (SBO). Among the 4 patients with ABBF treated with SBO, 3 cases successfully blocked ABBF with SBO, and the treatment success rate was 75%. All successfully treated patients reported disappearance of symptoms of bilioptysis and cough was alleviated. No life-threatening adverse reactions were reported following SBO intervention, and no deaths occurred. We believe that the use of video bronchoscopy to place a self-made silicone plug in the bronchus to treat refractory ABBF is a feasible palliative treatment, which can significantly improve the condition of ABBF patients.
RESUMEN
Purpose: To evaluate the operability and safety of bronchoscopic domestic one-way endobronchial valves (EBV) on animals. Methods: Nine pigs were randomly assigned (2:1) to receive domestic one-way EBV (the experimental group, n = 6) and Zephyr® EBV (the control group, n = 3). Routine blood tests, arterial blood gases, and CT scans of the lungs were performed 1 day pre-procedure in addition to 1 week and 1 month post-procedure to assess changes in blood markers and lung volumes. At 1 month post-procedure, the animals were sacrificed, followed by removal of all valves via bronchoscopy. Pathological examinations of critical organs were subsequently performed. Results: A total of 15 valves were placed in the experimental group and 6 valves were placed in the control group, without serious complications. Routine blood tests and arterial blood gas examinations at 1 day pre-procedure, 1 week post-procedure, and 1 month post-procedure did not differ significantly in both groups. No EBV displacement was noted under bronchoscopy, and the valve was smoothly removable by bronchoscope at 1 month post-procedure. At 1 week post-procedure, varying degrees of target lung lobe volume reduction were observed on lung CT in both groups. Lung volume reduction was achieved at 1 month post-procedure in both groups, without significant statistical difference. Although 3 cases in the experimental group and 1 case in the control group developed varying degrees of pneumonia, the inflammatory response did not increase over time during the experimental period. Pathological examination revealed no significant abnormal changes in the critical organs for both groups. Conclusion: Our results demonstrate that domestic EBV is safe and reliable for endobronchial application in general-grade laboratory white pigs. The safety of domestic EBV is similar to that of Zephyr® EBV, with good ease of use and operability. This kind of domestic EBV can meet the safety evaluation requirements for animal testing.
RESUMEN
Response gene to complement 32 (RGC32) is a novel cellular protein that has been reported to be expressed aberrantly in multiple types of human tumors. However, the role of RGC32 in cancer is still controversial, and the molecular mechanisms by which RGC32 contributes to the development of cancer remain largely unknown. In the present study, we constructed a recombinant expression vector pCDNA3.1-RGC32 and transfected it into human lung cancer A549 cells. Stable transformanted cells were identified by real-time PCR and Western blot analysis. Functional analysis showed that forced overexpression of RGC32 increased invasive and migration capacities of lung cancer cells in vitro, and induced the acquisition of epithelial-mesenchymal transition (EMT) phenotype, as demonstrated by the spindle-like morphology, downregulation of E-cadherin, and upregulation of Vimentin, Fibronectin, Snail and Slug. Also, overexpression of RGC32 increased expression and activities of matrix metalloproteinase (MMP)-2 and MMP-9 in A549 cells. Furthermore, the downregulation of E-cadherin induced by RGC32 was remarkably attenuated by nuclear factor-κB (NF-κB) inhibitor BAY 11-7028 and small interfering RNA targeting NF-κB p65, suggesting a role of the NF-κB signaling pathway in RGC32-induced EMT. Taken together, our data suggest that RGC32 promotes cell migration and invasion and induces EMT in lung cancer cells via the NF-κB signaling pathway.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transición Epitelial-Mesenquimal , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción ReIA/metabolismo , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Musculares/genética , Invasividad Neoplásica , Proteínas del Tejido Nervioso/genética , Transducción de Señal , Factor de Transcripción ReIA/genéticaRESUMEN
Airway smooth muscle (ASM) cell phenotypic switching played an important role in airway remodeling in asthma. In vitro platelet-derived growth factor (PDGF) induced ASM cell phenotypic switching from a mature to pro-remodeling phenotype, but the mechanism remained incompletely understood. This study was to explore the effect of DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (Aza-CdR) on PDGF-induced rat ASM cell phenotypic switching and biological behaviors. Rat airway smooth muscle (RASM) cells were obtained by primary explant techniques. Western blot, 3-dimensional gel contraction, transwell and wound healing assay, and MTT were applied to detect cell phenotypic switching, contractility, migration and proliferation, respectively. Cytoskeleton rearrangement was observed by immunofluorescence. Results showed Aza-CdR inhibited PDGF-induced down-regulation of contractile markers in RASM cells and increased cell contractility. Aza-CdR inhibited PDGF-induced RASM cell migration by abrogating cell morphology change and cytoskeletal reorganization and attenuated the effect of PDGF on proliferating cell nuclear antigen expression and cell cycle progression, ultimately cell proliferation. PDGF-induced DNA methyltransferase 1 (DNMT1) expression was mediated by activation of PI3K/Akt and ERK signaling in RASM cells. Selective depletion of DNMT1 protein by Aza-CdR inhibited PDGF-induced RASM cell phenotypic switching, revealing DNMT1-mediated DNA methylation was implicated in asthmatic ASM remodeling. We proposed for the first time that DNMT1 played a key role in PDGF-induced RASM cell phenotypic switching and Aza-CdR is promising in intervening ASM remodeling in asthma. Although study of abnormal DNA methylation in PDGF-stimulated ASM cells is in its infancy, this work contributes to providing new insights into the mechanism of ASM remodeling and may be helpful for developing effective treatments for airway remodeling in asthma.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Azacitidina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , Inhibidores Enzimáticos/toxicidad , Músculo Liso/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/farmacología , Animales , Asma/tratamiento farmacológico , Azacitidina/toxicidad , Becaplermina , Biomarcadores/metabolismo , Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cultivo/métodos , Citoesqueleto/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Decitabina , Modelos Animales de Enfermedad , Regulación hacia Abajo , Contracción Muscular , Músculo Liso/metabolismo , Fenotipo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacosRESUMEN
Pulmonary sarcomatoid carcinoma (PSC) is a rare subtype of non-small cell lung cancer (NSCLC), accounting for about 1% of cases. These tumors are characterized by their high malignancy and frequent resistance to chemotherapy, resulting in a worse prognosis compared to other NSCLC subtypes. Currently, there is no established therapeutic strategy for PSC. Recent advancements in targeted therapies have led to the development of ret proto-oncogene (RET) inhibitors, such as selpercatinib and pralsetinib, which have been approved for the treatment of RET fusion-positive NSCLC patients. Despite their effectiveness in RET fusion-positive NSCLC is observed, the efficacy of these inhibitors in PSC remains unclear. In this context, we present a case of metastatic PSC harboring de novo KIF5B-RET fusion. The patient responded to first-line trametinib treatment. These findings suggest that RET inhibitors could be a potential treatment option for metastatic PSC patients with RET fusion-positive tumors.
RESUMEN
BACKGROUND: Non-small cell lung cancer (NSCLC) has been the subject of intense scholarly debate. We aimed to identify the potential biomarkers via bioinformatics analysis. METHODS: Three datasets were downloaded from gene expression omnibus database (GEO). R software was applied to screen differentially expressed genes (DEGs)and analyze immune cell infiltrates. Gene set enrichment analysis (GSEA) showed significant function and pathway in two groups. The diagnostic markers were further investigated by multiple machine learning algorithms (least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE)). Various online analytic platforms were utilized to explore the expression and prognostic value of differential genes. Furthermore, western blotting was performed to test the effects of genes on cell proliferation in vitro. RESULTS: We identified 181 DEGs shared by two datasets and selected nine diagnostic markers. Those genes were also significantly overexpressed in the third dataset. Topoisomerase II alpha (TOP2A) is overexpressed in lung cancer and associated with a poor prognosis, which was confirmed using immunohistochemistry (IHC) and Western blotting. Additionally, TOP2A showed a negative correlation with immune cells, such as CD8+ T cells, eosinophils and natural killer (NK) cell. CONCLUSION: Collectively, for the first time, we applied multiple machine learning algorithms, online databases and experiments in vitro to show that TOP2A is a potential biomarker for lung adenocarcinoma and could facilitate the development of new treatment strategies.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Linfocitos T CD8-positivos , Algoritmos , Aprendizaje AutomáticoRESUMEN
5-methyladenosine (m5C) modification regulates gene expression and biological functions in oncologic areas. However, the effect of m5C modification in chronic hypersensitivity pneumonitis (CHP) and idiopathic pulmonary fibrosis (IPF) remains unknown. Expression data for 12 significant m5C regulators were obtained from the interstitial lung disease dataset. Five candidate m5C regulators, namely tet methylcytosine dioxygenase 2, NOP2/Sun RNA methyltransferase 5, Y-box binding protein 1, tRNA aspartic acid methyltransferase 1, and NOP2/Sun RNA methyltransferase 3 were screened using random forest and nomogram models to predict risks of pulmonary fibrosis. Next, we applied the consensus clustering method to stratify the samples with different m5C patterns into two groups (cluster A and B). Finally, we calculated immune cell infiltration scores via single-sample gene set enrichment analysis, then compared immune cell infiltration, related functions as well as the expression of programmed cell death 1 (PD-1, PDCD1) and programmed death protein ligand-1 (PD-L1, CD274) between the two clusters. Principal component analysis of m5C-related scores across the 288 samples revealed that cluster A had higher immune-related expression than B. Notably, T helper cell (Th) 2 type cytokines and Th1 signatures were more abundant in clusters A and B, respectively. Our results suggest that m5C is associated with and plays a crucial role in development of pulmonary fibrosis. These m5C patterns could be potential biomarkers for identification of CHP and IPF, and guide future development of immunotherapy or other new drugs strategies for pulmonary fibrosis.
Asunto(s)
Alveolitis Alérgica Extrínseca , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Fibrosis Pulmonar Idiopática/genética , Metiltransferasas/metabolismo , ARNRESUMEN
Objective To explore how alveolar macrophages from chronic obstructive pulmonary disease (COPD)-model rats affect proliferation and secretion of 16HBE human bronchial epithelial cells and investigate the associated mechanism. Methods Alveolar macrophages were extracted from COPD rats induced by cigarette smoke exposure and LPS instillation through bronchoalveolar lavage, then co-cultured with 16HBE cells in vitro. Exosomes were extracted from alveolar macrophages of rats with exosome isolation kit. The differentially expressed miRNA in exosomes derived from macrophages of rats in COPD group and control group was detected by PCR. miR-380 was overexpressed with miR-380 mimic while the expression of cystic fibrosis transmembrane transduction regulator (CFTR) was knocked down with siRNA in 16HBE cells. The proliferation of 16HBE cells was detected with CCK-8 assay. The migration ability of 16HBE cells was evaluated with TranswellTM migration assay. The levels of mucins (MUC5AC, MUC5B, MUC2) and CFTR expressed by 16HBE cells were detected with Western blot analysis. The expression of TNF-α and IL-6 in the supernatant of 16HBE cells was detected with ELISA. Results The alveolar macrophages from COPD rats enhanced the proliferation and migration of 16HBE cells. The production of mucins and TNF-α as well as IL-6 in 16HBE cells were increased by COPD macrophages. The expression of miR-380 was significantly elevated in exosomes derived from COPD alveolar macrophages. Both overexpression of miR-380 and inhibition of CFTR decreased the expression of CFTR, resulting in the significantly enhanced proliferation and migration of 16HBE cells as well as increased expression of MUC5AC, MUC5B, MUC2 and TNF-α, IL-6. Conclusion The alveolar macrophages from COPD rats can enhance the proliferation and mucin expression as well as inflammatory cytokine secretion of 16HBE cells. This process may be involved with abnormal expression of miR-380 in exosomes of COPD alveolar macrophages and down-regulation of CFTR in bronchial epithelial cells.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Macrófagos Alveolares , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratas , Proliferación Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos adversos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mucinas/efectos adversos , Mucinas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Accurate diagnosis and subsequent therapeutic options in pulmonary diseases mainly rely on imaging methods and histological assessment. However, imaging examinations are hampered by the limited spatial resolution of images and most procedures that are related to histological assessment are invasive with associated complications. As a result, a high-resolution imaging technology - confocal laser endomicroscopy (CLE), which is at the forefront and enables real-time microscopic visualisation of the morphologies and architectures of tissues or cells - has been developed to resolve the clinical dilemma pertaining to current techniques. The current evidence has shown that CLE has the potential to facilitate advanced diagnostic capabilities, to monitor and to aid the tailored treatment regime for patients with pulmonary diseases, as well as to expand the horizon for unravelling the mechanism and therapeutic targets of pulmonary diseases. In the future, if CLE can be combined with artificial intelligence, early, rapid and accurate diagnosis will be achieved through identifying the images automatically. As promising as this technique may be, further investigations are required before it can enter routine clinical practice.
Asunto(s)
Neumología , Humanos , Inteligencia Artificial , Microscopía Confocal/métodos , Rayos LáserRESUMEN
Background: Transbronchial lung biopsy guided by radial probe endobronchial ultrasonography with a guide sheath (EBUS-GS-TBLB) is becoming a significant approach for diagnosing peripheral pulmonary lesions (PPLs). We aimed to explore the clinical value of the resistance of the probe to pass through the lesion in the diagnosis of PPLs when performing EBUS-GS-TBLB, and to determine the optimum number of EBUS-GS-TBLB. Methods: We performed a prospective, single-center study of 126 consecutive patients who underwent EBUS-GS-TBLB for solid and positive-bronchus-sign PPLs where the probe was located within the lesion from September 2019 to May 2022. The classification of probe resistance for each lesion was carried out by two bronchoscopists independently, and the final result depended on the bronchoscopist responsible for the procedures. The primary endpoint was the diagnostic yield according with the resistance pattern. The secondary endpoints were the optimum number of EBUS-GS-TBLB and factors affecting diagnostic yield. Procedural complications were also recorded. Results: The total diagnostic yield of EBUS-GS-TBLB was 77.8%, including 83.8% malignant and 67.4% benign diseases (P=0.033). Probe resistance type II displayed the highest diagnostic yield (87.5%), followed by type III (81.0%) and type I (61.1%). A significant difference between the diagnostic yield of malignant and benign diseases was detected in type II (P = 0.008), whereas others did not. Although most of the malignant PPLs with a definitive diagnosis using EBUS-GS-TBLB in type II or type III could be diagnosed in the first biopsy, the fourth biopsy contributed the most sufficient biopsy samples. In contrast, considerably limited tissue specimens could be obtained for each biopsy in type I. The inter-observer agreement of the two blinded bronchoscopists for the classification of probe resistance was excellent (κ = 0.84). Conclusion: The probe resistance is a useful predictive factor for successful EBUS-GS-TBLB diagnosis of solid and positive-bronchus-sign PPLs where the probe was located within the lesion. Four serial biopsies are appropriate for both probe resistance type II and type III, and additional diagnostic procedures are needed for type I.
RESUMEN
Many clinical trials of kinesin spindle protein (KSP) inhibitors have failed due to issues such as high toxicity and a short circulation half-life in vivo. To address the limitations of current KSP inhibitors and thus broad its use in antitumor therapy, this study applied antibody-drug conjugate (ADC) technology to the KSP inhibitor SB-743921, which was coupled with the HER2-specific antibody trastuzumab using a cathepsin B-dependent valine-alanine (Val-Ala, VA) dipeptide-type linker to generate H2-921. Ex vivo and in vivo analyses of H2-921 showed an increased half-life of SB-743921 and prolonged contact time with tumor cells. Furthermore, H2-921 induced apoptosis and incomplete autophagy in HER2-positive cells. In the in vivo analyses, H2-921 had significant tumor-targeting properties, and tumor inhibition by H2-921 was greater than that by traditional KSP inhibitors but similar to that by the positive control drug T-DM1. In conclusion, this study describes a novel application of ADC technology that enhances the antitumor effects of a KSP inhibitor and thus may effectively address the poor clinical efficacy of KSP inhibitors.
Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Cinesinas/metabolismo , Trastuzumab , Neoplasias/tratamiento farmacológico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Línea Celular Tumoral , Antineoplásicos/farmacologíaRESUMEN
Purpose: PLEKHG2 is a member of the diffuse B-cell lymphoma family. The function of PLEKHG2 in NSCLC was still unclear. This study aimed to investigate the relationship between the upregulated expression of PLEKHG2 and the prognosis of NSCLC and to revealed its mechanisms. Materials and methods: The expression of PLEKHG2 in NSCLC patients and its relationship with prognosis were first determined by analyzing public databases. Validation was performed in NSCLC cell lines and patient`s tumor tissues. PLEKHG2-silenced H1299 cells and PLEKHG2 overexpressing PC9 cells were constructed and used to validate its function. Glycolysis was evaluated by assaying cellular metabolites, glucose uptake and the expression levels of biomarkers of glycolysis. The relationship of PLEKHG2 and the PI3K/Akt pathway was demonstrated by small molecule inhibitors. The function of PLEKHG2 was evaluated in vivo by a H1299 cell derived xenograft (CDX) model. Results: PLEKEHG2 was highly expressed in NSCLC tissues and associated with poor prognosis. In PLEKHG2 knockdown H1299 cells, ATP and lactate production and glucose uptake were significantly inhibited. The opposite results were observed in PC9 cells with PLEKHG2 overexpression. The increased glycolysis following PLEKHG2 overexpression was abolished by adding the PI3K/AKT pathway inhibitor LY294002, suggesting that PLEKHG2 promotes glycolysis in NSCLC cells via activation of the PI3K/AKT pathway. Finally, we found that PLEKHG2 knockdown inhibited the tumor growth in the H1299 CDX model. Conclusion: PLEKHG2 contributed to NSCLC development by promoting glycolysis via activation of the PI3K/AKT pathway. PLEKHG2 was a potential therapeutic target and biomarker for poor prognosis of NSCLC.