Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 602(7897): 414-419, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173339

RESUMEN

Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a promising path towards sustainable energy. A core challenge is to shape and maintain a high-temperature plasma within the tokamak vessel. This requires high-dimensional, high-frequency, closed-loop control using magnetic actuator coils, further complicated by the diverse requirements across a wide range of plasma configurations. In this work, we introduce a previously undescribed architecture for tokamak magnetic controller design that autonomously learns to command the full set of control coils. This architecture meets control objectives specified at a high level, at the same time satisfying physical and operational constraints. This approach has unprecedented flexibility and generality in problem specification and yields a notable reduction in design effort to produce new plasma configurations. We successfully produce and control a diverse set of plasma configurations on the Tokamak à Configuration Variable1,2, including elongated, conventional shapes, as well as advanced configurations, such as negative triangularity and 'snowflake' configurations. Our approach achieves accurate tracking of the location, current and shape for these configurations. We also demonstrate sustained 'droplets' on TCV, in which two separate plasmas are maintained simultaneously within the vessel. This represents a notable advance for tokamak feedback control, showing the potential of reinforcement learning to accelerate research in the fusion domain, and is one of the most challenging real-world systems to which reinforcement learning has been applied.

2.
J Opt Soc Am A Opt Image Sci Vis ; 23(6): 1382-90, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16715157

RESUMEN

We present a technique for efficiently computing the reflection and transmission of light by arbitrary systems of turbid layers. To approximate the steady-state reflectance and transmittance without the need to solve difficult boundary conditions, we convolve the reflectance and transmittance profiles of individual layers. We extend single-slab boundary conditions to handle index-of-refraction mismatches between turbid slabs and account for interlayer scattering by applying methods similar to Kubelka-Munk theory in frequency space. We demonstrate good agreement between the reflectance and the transmittance predicted by our model and numerical Monte Carlo methods and show that the far-source reflectance and transmittance of multilayered turbid materials are dominated by interlayer scattering.


Asunto(s)
Algoritmos , Mezclas Complejas/análisis , Mezclas Complejas/química , Modelos Químicos , Nefelometría y Turbidimetría/métodos , Radiometría/métodos , Simulación por Computador , Luz , Dosis de Radiación , Dispersión de Radiación
3.
Opt Lett ; 31(7): 936-8, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16599217

RESUMEN

Many existing methods for the recovery of optical parameters from turbid materials rely on the diffusion approximation, which does not permit the recovery of the degree of anisotropy in the scattering phase function. These methods also make the explicit assumption that light is normally incident at the top surface of the material. We demonstrate a steady-state imaging technique that uses nonnormally incident light to determine anisotropy parameter g by fitting Monte Carlo simulation results to high dynamic range images of the intensity profiles of samples. The proposed method is simpler than existing methods and does not rely on thin samples to produce reasonable results.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Nefelometría y Turbidimetría/métodos , Refractometría/métodos , Tomografía Óptica/métodos , Anisotropía , Simulación por Computador , Luz , Modelos Biológicos , Modelos Estadísticos , Método de Montecarlo , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA