Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Chemistry ; 30(27): e202400296, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38427538

RESUMEN

Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.

2.
Chemistry ; 29(56): e202301829, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452614

RESUMEN

The straightforward synthesis of several Fluorinated Polycyclic Aromatic Hydrocarbons by the efficient, transition-metal-free, arene fluorine nucleophilic substitution reaction is described, and the full investigation of their liquid crystalline and optical properties reported. The key precursors for this study, i. e. 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl derivatives, were obtained in two steps from the highly selective Scholl oxidative homo-coupling of 3,4-dialkoxy-1-bromobenzene, followed by quantitative double-lithiation. In situ room temperature nucleophilic annulation with either perfluorobenzene or perfluoronaphthalene leads to 1,2,3,4-tetrafluoro-6,7,10,11-tetraalkxoytriphenylenes and 9,10,11,12,13,14-hexafluoro-2,3,6,7-tetraalkoxybenzo[f]tetraphenes, respectively, in good yields. Exploiting the same strategy, subsequent double annulations resulted in the formation of 9,18-difluoro-2,3,6,7,11,12,15,16-octa(alkoxy)tribenzo[f,k,m]tetraphenes and 9,10,19,20-tetrafluoro-2,3,6,7,12,13,16,17-octakis(hexyloxy)tetrabenzo[a,c,j,l]tetracenes, respectively. Despite the presence of only four alkoxy chains, the polar "Janus" mesogens display a columnar hexagonal mesophase over broad temperature ranges, with higher mesophase stability than the archetypical 2,3,6,7,10,11-hexa(alkoxy)triphenylenes and their hydrogenated counterparts. The improvement or induction of mesomorphism is attributed to efficient antiparallel face-to-face π-stacking driven by the establishment of non-covalent perfluoroarene-arene intermolecular interactions. The larger lipophilic discotic π-extended compounds also exhibit columnar mesomorphism, over similar temperature ranges and stability than their hydrogenated homologs. Finally, these fluorinated molecules form stringy gels in various solvents, and show interesting solvatochromic emission properties in solution as well as strong emission in thin films and gels.

3.
Soft Matter ; 19(46): 9115-9122, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37990586

RESUMEN

Novel hybrid silsesquioxane-based liquid crystalline derivatives with varied lengths of spacers and tails have been synthesized by hydrosilylation reactions of octakis(dimethylsiloxy)silsesquioxane and side-on mesogens via a platinum catalyst. The thermal behavior of three types of silsesquioxane-based liquid crystals (LCs), differentiated by the molecular structure of mesogens, was investigated by differential scanning calorimetry (DSC) and polarising optical microscopy (POM). Temperature-dependent small and wide-angle X-ray scattering was used to verify liquid crystalline phases, revealing that the silsesquioxane-based derivatives formed hexagonal columnar and nematic mesophases, and the effect of the molecular structure of the mesogens and the spacer length on the formation of LC phases is discussed. This investigation demonstrated that the choice of the "side-on" attachments plays a crucial role in enhancing the emergence of the nematic phase.

4.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838709

RESUMEN

π-Extended pyrene compounds possess remarkable luminescent and semiconducting properties and are being intensively investigated as electroluminescent materials for potential uses in organic light-emitting diodes, transistors, and solar cells. Here, the synthesis of two sets of pyrene-containing π-conjugated polyaromatic regioisomers, namely 2,3,10,11,14,15,20,21-octaalkyloxypentabenzo[a,c,m,o,rst]pentaphene (BBPn) and 2,3,6,7,13,14,17,18-octaalkyloxydibenzo[j,tuv]phenanthro [9,10-b]picene (DBPn), is reported. They were obtained using the Suzuki-Miyaura cross-coupling in tandem with Scholl oxidative cyclodehydrogenation reactions from the easily accessible precursors 1,8- and 1,6-dibromopyrene, respectively. Both sets of compounds, equipped with eight peripheral aliphatic chains, self-assemble into a single hexagonal columnar mesophase, with one short-chain BBPn homolog also exhibiting another columnar mesophase at a lower temperature, with a rectangular symmetry; BBPn isomers also possess wider mesophase ranges and higher mesophases' stability than their DBPn homologs. These polycyclic aromatic hydrocarbons all show a strong tendency of face-on orientation on the substrate and could be controlled to edge-on alignment through mechanical shearing of interest for their implementation in photoelectronic devices. In addition, both series BBPn and DBPn display green-yellow luminescence, with high fluorescence quantum yields, around 30%. In particular, BBPn exhibit a blue shift phenomenon in both absorption and emission with respect to their DBPn isomers. DFT results were in good agreement with the optical properties and with the stability ranges of the mesophases by confirming the higher divergence from the flatness of DBPn compared with BBPn. Based on these interesting properties, these isomers could be potentially applied not only in the field of fluorescent dyes but also in the field of organic photoelectric semiconductor materials as electron transport materials.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pirenos , Transporte de Electrón , Fluorescencia , Poli A
5.
J Am Chem Soc ; 143(23): 8804-8820, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34077184

RESUMEN

Macrocycles possessing radially oriented π-orbitals have experienced a fantastic development. However, their incorporation in organic electronic devices remains very scarce. In this work, we aim at bridging the gap between organic electronics and nanorings by reporting the first detailed structure-properties-device performance relationship study of organic functional materials based on a nanoring system. Three [4]cyclo-N-alkyl-2,7-carbazoles bearing different alkyl chains on their nitrogen atoms have been synthesized and characterized by combined experimental and theoretical approaches. This study includes electrochemical, photophysical, thermal, and structural solid-state measurements and charge transport properties investigations. An optimized protocol of the Pt approach has been developed to synthesize the [4]cyclocarbazoles in high yield (52-64%), of great interest for further development of nanorings, especially in materials science. The charge transport properties of [4]cyclocarbazoles and model compound [8]cycloparaphenylene ([8]CPP) have been studied. Although no field effect (FE) mobility was recorded for the benchmark [8]CPP, FE mobility values of ca. 10-5 cm2·V-1·s-1 were recorded for the [4]cyclocarbazoles. The characteristics (threshold voltage VTH, subthreshold swing SS, trapping energy ΔE) recorded for the three [4]cyclocarbazoles appear to be modulated by the alkyl chain length borne by the nitrogen atoms. Remarkably, the space-charge-limited current mobilities measured for the [4]cyclocarbazoles are about 3 orders of magnitude higher than that of [8]CPP (1.37/2.78 × 10-4 cm2·V-1·s-1 for the [4]cyclocarbazoles vs 1.21 × 10-7 cm2·V-1·s-1 for [8]CPP), highlighting the strong effect of nitrogen bridges on the charge transport properties. The whole study opens the way to the use of nanorings in electronics, which is now the next step of their development.

6.
Nano Lett ; 20(3): 1598-1606, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-31951415

RESUMEN

In this Letter, we show how advanced hierarchical structures of topological defects in the so-called smectic oily streaks can be used to sequentially transfer their geometrical features to gold nanospheres. We use two kinds of topological defects, 1D dislocations and 2D ribbon-like topological defects. The large trapping efficiency of the smectic dislocation cores not only surpasses that of the elastically distorted zones around the cores but also surpasses the one of the 2D ribbon-like topological defect. This enables the formation of a large number of aligned NP chains within the dislocation cores that can be quasi-fully filled without any significant aggregation outside of the cores. When the NP concentration is large enough to entirely fill the dislocation cores, the LC confinement varies from 1D to 2D. We demonstrate that the 2D topological defect cores induce a confinement that leads to planar hexagonal networks of NPs. We then draw the phase diagram driven by NP concentration, associated with the sequential confinements induced by these two kinds of topological defects. Owing to the excellent large-scale order of these defect cores, not only the NP chains but also the NP hexagonal networks can be oriented along the desired direction, suggesting a possible new route for the creation of either 1D or 2D highly anisotropic NP networks. In addition, these results open rich perspectives based on the possible creation of coexisting NP assemblies of different kinds, localized in different confining areas of a same smectic film that would thus interact thanks to their proximity but also would interact via the surrounding soft matter matrix.

7.
Small ; 16(6): e1903897, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31961995

RESUMEN

There is a crucial need for effective and easily dispersible colloidal microsensors able to detect local pH changes before irreversible damages caused by demineralization, corrosion, or biofilms occur. One class of such microsensors is based on molecular dyes encapsulated or dispersed either in polymer matrices or in liquid systems exhibiting different colors upon pH variations. They are efficient but often rely on sophisticated and costly syntheses, and present significant risks of leakage and photobleaching damages, which is detrimental for mainstream applications. Another approach consists of exploiting the distance-dependent plasmonic properties of metallic nanoparticles. Still, assembling nanoparticles into dispersible colloidal pH-sensitive sensors remains a challenge. Here, it is shown how to combine optically active plasmonic gold nanoparticles and pH-responsive thin shells into "plasmocapsules." Upon pH change, plasmocapsules swell or shrink. Concomitantly, the distance between the gold nanoparticles embedded in the polymeric matrix varies, resulting in an unambiguous color change. Billions of micron-size sensors can thus be easily fabricated. They are nonintrusive, reusable, and sense local pH changes. Each plasmocapsule is an independent reversible microsensor over a large pH range. Finally, their potential use for the detection of bacterial growth is demonstrated, thus proving that plasmocapsules are a new class of sensing materials.


Asunto(s)
Colorimetría , Oro , Nanopartículas del Metal , Colorimetría/instrumentación , Colorimetría/métodos , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química
8.
Chemistry ; 26(21): 4850-4860, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32064682

RESUMEN

Blue-green luminescent terpyridine-containing PtII and ZnII complexes are reported. Equipped with lipophilic gallate units, which act as monodentate ancillary coordinating ligands and/or as anions, they display low-temperature mesomorphic properties (lamello-columnar and hexagonal mesophases for PtII and ZnII complexes, respectively). The mesomorphic properties were investigated by polarised optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray scattering of bulk materials and oriented thin films. The model of self-assembly into the lamello-columnar phase of the PtII complex has been described in detail. The optical properties of the complexes were investigated in the liquid and condensed liquid crystalline states, highlighting the delicate balance between the role of the metal in determining the type of excited state responsible for the emission, and the role of the ancillary ligand in driving intermolecular interactions for proper mesophase formation.

9.
Langmuir ; 35(52): 16970-16977, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31804835

RESUMEN

The phase detection in the dynamic mode of the atomic force microscopes is a known technique for mapping nanoscale surface heterogeneities. We present here an additional functionality of this technique, which allows high-resolution imaging of embedded inorganic nanoparticles with diameter and interparticle distances of a few nanometers. The method is based on a highly nonlinear tip-sample interaction occurring markedly above the nanoparticles, giving thus a high phase contrast between zones with and without nanoparticles. A relationship between the tip-sample interaction strength and the phase signal is established in experiments and from calculations conducted with the model developed by Haviland et al. [ Soft Matter 2016 , 12 , 619 ], which is based on solving a combined equation of motion for both the cantilever and surface while taking into account the time-varying interaction forces. The nonlinear phase behavior at the origin of the subnanometer spatial resolution is found by numerical analyses to be the result of a local mechanical stiffening of the zone containing nanoparticles, which is enhanced by 2 orders of magnitude or more.

10.
Inorg Chem ; 58(14): 9505-9512, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247839

RESUMEN

Functionalization of 1,4-di(4-pyridinyl)benzene with poly(arylester) dendrimers bearing cyanobiphenyl end-groups gives a bidentate dendromesogenic ligand (L) that exhibits thermotropic liquid-crystalline properties. Combination of the diruthenium complex [Ru2(p-cymene)2(donq)][DDS]2 (M) with L, by coordination-driven self-assembly, affords the discrete and well-defined metallacycle M2L2. Like L, this supramolecular dendritic system displays mesomorphic properties above 50 °C. Both compounds L and M2L2 show smectic phases, characterized by a multilayered organization of the multiple components.

11.
J Org Chem ; 83(6): 3208-3219, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29493239

RESUMEN

Liquid-crystalline tris[60]fullerodendrimers based on first- and second-generation poly(arylester)dendrons carrying cyanobiphenyl mesogens were synthesized for the first time by the olefin cross-metathesis reaction between type I (terminal) and type II (α,ß-unsaturated carbonyl) olefinic precursors, using a second-generation Grubbs or Hoveyda-Grubbs catalyst. The modular synthetic approach developed here also allowed the selective preparation of the [60]fullerene-free, mono[60]fullerodendrimer, and bis[60]fullerodendrimer derivatives from the appropriate precursors. As revealed by polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering, all of the materials displayed liquid-crystalline properties. In agreement with the nature of the dendritic building blocks, the emergence of lamellar mesophases (smectic C and/or smectic A phases), with the segregation of the various constitutive parts, was systematically observed. The small variation of the mesomorphic temperature range and of the mesophase stability suggested that the mesomorphism is essentially dominated by the dendrimer itself and is regulated by a subtle adaptive mechanism, in which the proportion of monolayering and bilayering arrangements of the multisegregated lamellar mesophases is modified in order to compensate the space requirements of each of the elementary building blocks, namely, the [60]fullerene units, the cyanobiphenyl mesogens, and the dendritic matrix.

12.
Inorg Chem ; 57(8): 4359-4369, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29608287

RESUMEN

Two imidazolium salts containing one or two pentadodecyloxytriphenylene units linked through a hexyloxy chain and Br-, [AuBr mCl4- m]-, or [PtBr mCl4- m]2- ( m = 0-3) as counterion have been prepared. Reaction of the imidazolium bromides with M2O (M = Cu, Ag), or carbene transmetalation from the silver product, leads to N-heterocyclic carbene complexes [MX(NHC)] (M = Cu, X = Br; M = Au, X = Cl, C≡CPh), [Ag(NHC)2][AgBr2], and [PtCl2(NHC)2], with NHC bearing one or two triphenylene fragments. Except for the gold derivatives and one Cu complex, the rest of them behave as liquid crystals organized in columnar mesophases (rectangular c2 mm or p2mg or hexagonal p6mm symmetries) with melting points in the range 30 to 60 °C and clearing points in the range 57-112 °C. The mesophase structures were determined by small-angle X-ray scattering. Structural studies and models point to nanosegregation of triphenylene columns and imidazolium/metal carbene moieties, separated by alkoxy chains, leading to multicolumnar systems. The compounds display emission spectra related to the triphenylene core in solution, in the mesophase, in the isotropic liquid, and in the solid state.

13.
Small ; 13(39)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28834168

RESUMEN

Efficiently detecting mechanical deformations within materials is critical in a wide range of devices, from micro-electromechanical systems to larger structures in the aerospace industry. This communication reports the fabrication of new mechanochromic micrometer-size capsules enabling the detection of strains. These microcapsules are synthesized using an emulsification approach. They are made of densely packed gold nanoparticles embedded in a spherical silica crust. Billions of these composite spherical microcapsules are fabricated in a single batch. Each microcapsule is an opto-mechanosensor by itself, and can easily be recovered and incorporated into polymer films. When the films are stretched, the microcapsules are deformed into elongated ellipsoidal shapes and the distance between the Au NPs embedded in their shells concomitantly increases. As the extinction of Au NPs depends on the separation between the Au NPs, microcapsules exhibit different colors when they are elongated. These novel sensitive microcapsules can be used to detect and measure strain in polymer films by outputting color information.

14.
Chemistry ; 23(68): 17290-17303, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28895651

RESUMEN

We report the first studies on the intrinsic properties of a meta-substituted dihydroindacenodithienyl fragment and more generally the strong impact of positional isomerism on dihydroindacenodithiophene derivatives. The influence of the para and meta linkages has notably been highlighted not only for the electronic properties in solution (electrochemical properties, anodic polymerization, HOMO/LUMO energy levels, optical transitions, fluorescence spectra) but also on the physical properties in the solid state (molecular organization, crystallinity, and phase transitions). The positional isomerism hence appears to be a very efficient tool to drastically tune the properties of dihydroindacenodithiophene derivatives.

15.
J Am Chem Soc ; 138(33): 10508-15, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27472457

RESUMEN

Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

16.
Chemistry ; 22(48): 17366-17376, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27754571

RESUMEN

Bis-[60]fullerodendrimers were synthesized by assembling [60]fullerene-containing type I (terminal olefin) and type II (α,ß-unsaturated carbonyl olefin) olefins through the olefin cross-metathesis reaction. The synthetic modular approach developed in this study allowed the preparation of mono-[60]fullerodendrimers and their [60]fullerene-free analogues. First- and second-generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens were used as liquid-crystalline promoters. The liquid-crystalline properties were studied by polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering. In agreement with the nature and structure of the dendrimers, nematic, smectic, and multisegregated lamellar phases were observed. Owing to its versatility and tolerance towards many functional groups, olefin cross-metathesis proved to be a reaction of choice for the elaboration of molecular materials with complex architectures.

17.
Chemistry ; 22(24): 8215-33, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27138194

RESUMEN

The luminescent and mesomorphic properties of a series of metal complexes based on hexacatenar 2,2':6',2''-terpyridines are investigated using experimental methods and density functional theory (DFT). Two types of ligand are examined, namely 5,5''-di(3,4,5-trialkoxyphenyl)terpyridine with or without a fused cyclopentene ring on each pyridine and their complexes were prepared with the following transition metals: Zn(II) , Co(III) , Rh(III) , Ir(III) , Eu(III) and Dy(III) . The exact geometry of some of these complexes was determined by single X-ray diffraction. All complexes with long alkyl chains were found to be liquid crystalline, which property was induced on complexation. The liquid-crystalline behaviour of the complexes was studied by polarising optical microscopy and small-angle X-ray diffraction. Some of the transition metal complexes (for example, those with Zn(II) and Ir(III) ) are luminescent in solution, the solid state and the mesophase; their photophysical properties were studied both experimentally and using DFT methods (M06-2X and B3LYP).

18.
Inorg Chem ; 55(3): 1296-303, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26788960

RESUMEN

A new series of nickel N,N'-dialkylimidazolidine-2,4,5-trithione complexes ([Ni(R2timdt)2]) carrying linear or branched carbon chains (R = n-C4H9, n-C8H17, n-C12H25, n-C16H33, 2-ethylhexyl, 2-butyloctyl, phytanyl) have been obtained through an original synthetic pathway starting from easily available imidazolium-based ionic liquids. The chemical structures of these nickel complexes were confirmed by NMR and high-resolution mass spectroscopies as well as by X-ray analysis performed on single crystals. The complexes strongly absorb in the near-IR (NIR) region around 1000 nm, with high extinction coefficients reaching 80 000 M(-1) cm(-1). They are able to efficiently convert NIR light into heat under laser irradiation with very high photothermal conversion efficiencies (around 30%).

19.
Nano Lett ; 15(12): 8008-12, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26580005

RESUMEN

Small-angle X-ray and neutron scattering provide powerful tools to selectively characterize the inorganic and organic components of hybrid nanomaterials. Using hydrophobic gold nanoparticles coated with several commercial and dendritic thiols, the size of the organic layer on the gold particles is shown to increase from 1.2 to 4.1 nm. A comparison between solid-state diffraction from self-assembled lattices of nanoparticles and the solution data from neutron scattering suggests that engineering softness/deformability in nanoparticle coatings is less straightforward than simply increasing the organic size. The "dendritic effect" in which higher generations yield increasingly compact molecules explains changes in the deformability of organic ligand shells.

20.
J Am Chem Soc ; 137(33): 10728-34, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26258660

RESUMEN

Self-assembly of nanoparticles into designed structures with controlled interparticle separations is of crucial importance for the engineering of new materials with tunable functions and for the subsequent bottom-up fabrication of functional devices. In this study, a series of lipophilic, highly flexible, disulfide dendritic wedges (generations 0-4), based on 2,2-bis(hydroxymethyl)propionic acid, was designed to bind Au nanoparticles with a thiolate bond. By controlling the solvent evaporation rate, the corresponding dendron-capped Au hybrids were found to self-organize into hexagonal close-packed (hcp) superlattices. The interparticular spacing was progressively varied from 2.2 to 6.3 nm with increasing dendritic generation, covering a range that is intermediate between commercial ligands and DNA-based ligand shells. Dual mixtures made from some of these dendronized hybrids (i.e., same inner core size but different dendritic covering) yielded binary superlattice structures of unprecedented single inorganic components, which are isostructural with NaZn13 and CaCu5 crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA