Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7929): 959-963, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36171376

RESUMEN

Paired fins are a major innovation1,2 that evolved in the jawed vertebrate lineage after divergence from living jawless vertebrates3. Extinct jawless armoured stem gnathostomes show a diversity of paired body-wall extensions, ranging from skeletal processes to simple flaps4. By contrast, osteostracans (a sister group to jawed vertebrates) are interpreted to have the first true paired appendages in a pectoral position, with pelvic appendages evolving later in association with jaws5. Here we show, on the basis of articulated remains of Tujiaaspis vividus from the Silurian period of China, that galeaspids (a sister group to both osteostracans and jawed vertebrates) possessed three unpaired dorsal fins, an approximately symmetrical hypochordal tail and a pair of continuous, branchial-to-caudal ventrolateral fins. The ventrolateral fins are similar to paired fin flaps in other stem gnathostomes, and specifically to the ventrolateral ridges of cephalaspid osteostracans that also possess differentiated pectoral fins. The ventrolateral fins are compatible with aspects of the fin-fold hypothesis for the origin of vertebrate paired appendages6-10. Galeaspids have a precursor condition to osteostracans and jawed vertebrates in which paired fins arose initially as continuous pectoral-pelvic lateral fins that our computed fluid-dynamics experiments show passively generated lift. Only later in the stem lineage to osteostracans and jawed vertebrates did pectoral fins differentiate anteriorly. This later differentiation was followed by restriction of the remaining field of fin competence to a pelvic position, facilitating active propulsion and steering.


Asunto(s)
Aletas de Animales , Evolución Biológica , Fósiles , Vertebrados , Aletas de Animales/anatomía & histología , Animales , China , Maxilares/anatomía & histología , Filogenia , Vertebrados/anatomía & histología
2.
Nature ; 602(7896): 263-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937052

RESUMEN

High-throughput sequencing projects generate genome-scale sequence data for species-level phylogenies1-3. However, state-of-the-art Bayesian methods for inferring timetrees are computationally limited to small datasets and cannot exploit the growing number of available genomes4. In the case of mammals, molecular-clock analyses of limited datasets have produced conflicting estimates of clade ages with large uncertainties5,6, and thus the timescale of placental mammal evolution remains contentious7-10. Here we develop a Bayesian molecular-clock dating approach to estimate a timetree of 4,705 mammal species integrating information from 72 mammal genomes. We show that increasingly larger phylogenomic datasets produce diversification time estimates with progressively smaller uncertainties, facilitating precise tests of macroevolutionary hypotheses. For example, we confidently reject an explosive model of placental mammal origination in the Palaeogene8 and show that crown Placentalia originated in the Late Cretaceous with unambiguous ordinal diversification in the Palaeocene/Eocene. Our Bayesian methodology facilitates analysis of complete genomes and thousands of species within an integrated framework, making it possible to address hitherto intractable research questions on species diversifications. This approach can be used to address other contentious cases of animal and plant diversifications that require analysis of species-level phylogenomic datasets.


Asunto(s)
Evolución Molecular , Mamíferos , Filogenia , Animales , Teorema de Bayes , Euterios/clasificación , Euterios/genética , Femenino , Mamíferos/clasificación , Mamíferos/genética , Placenta , Embarazo , Especificidad de la Especie
3.
Nature ; 609(7927): 541-546, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978194

RESUMEN

The early history of deuterostomes, the group composed of the chordates, echinoderms and hemichordates1, is still controversial, not least because of a paucity of stem representatives of these clades2-5. The early Cambrian microscopic animal Saccorhytus coronarius was interpreted as an early deuterostome on the basis of purported pharyngeal openings, providing evidence for a meiofaunal ancestry6 and an explanation for the temporal mismatch between palaeontological and molecular clock timescales of animal evolution6-8. Here we report new material of S. coronarius, which is reconstructed as a millimetric and ellipsoidal meiobenthic animal with spinose armour and a terminal mouth but no anus. Purported pharyngeal openings in support of the deuterostome hypothesis6 are shown to be taphonomic artefacts. Phylogenetic analyses indicate that S. coronarius belongs to total-group Ecdysozoa, expanding the morphological disparity and ecological diversity of early Cambrian ecdysozoans.


Asunto(s)
Cordados , Filogenia , Animales , Cordados/anatomía & histología , Fósiles , Boca , Paleontología
4.
Proc Biol Sci ; 291(2019): 20232258, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531402

RESUMEN

Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Peces/anatomía & histología , Vertebrados/anatomía & histología , Maxilares/anatomía & histología , Filogenia
5.
New Phytol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840553

RESUMEN

Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.

6.
Nature ; 621(7980): 696-698, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730784

Asunto(s)
Cabeza , Cráneo
7.
Proc Biol Sci ; 290(2004): 20230522, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37554036

RESUMEN

Analyses of morphological disparity can incorporate living and fossil taxa to facilitate the exploration of how phenotypic variation changes through time. However, taphonomic processes introduce non-random patterns of data loss in fossil data and their impact on perceptions of disparity is unclear. To address this, we characterize how measures of disparity change when simulated and empirical data are degraded through random and structured data loss. We demonstrate that both types of data loss can distort the disparity of clades, and that the magnitude and direction of these changes varies between the most commonly employed distance metrics and disparity indices. The inclusion of extant taxa and exceptionally preserved fossils mitigates these distortions and clarifies the full extent of the data lost, most of which would otherwise go uncharacterized. This facilitates the use of ancestral state estimation and evolutionary simulations to further control for the effects of data loss. Where the addition of such reference taxa is not possible, we urge caution in the extrapolation of general patterns in disparity from datasets that characterize subsets of phenotype, which may represent no more than the traits that they sample.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia , Fenotipo
8.
Biol Lett ; 19(1): 20220497, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628953

RESUMEN

Panarthropoda, the clade comprising the phyla Onychophora, Tardigrada and Euarthropoda, encompasses the largest majority of animal biodiversity. The relationships among the phyla are contested and resolution is key to understanding the evolutionary assembly of panarthropod bodyplans. Molecular phylogenetic analyses generally support monophyly of Onychophora and Euarthropoda to the exclusion of Tardigrada (Lobopodia hypothesis), which is also supported by some analyses of morphological data. However, analyses of morphological data have also been interpreted to support monophyly of Tardigrada and Euarthropoda to the exclusion of Onychophora (Tactopoda hypothesis). Support has also been found for a clade of Onychophora and Tardigrada that excludes Euarthropoda (Protarthropoda hypothesis). Here we show, using a diversity of phylogenetic inference methods, that morphological datasets cannot discriminate statistically between the Lobopodia, Tactopoda and Protarthropoda hypotheses. Since the relationships among the living clades of panarthropod phyla cannot be discriminated based on morphological data, we call into question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species and the evolutionary hypotheses based upon them.


Asunto(s)
Artrópodos , Tardigrada , Animales , Filogenia , Artrópodos/genética , Artrópodos/anatomía & histología , Incertidumbre , Evolución Biológica , Tardigrada/genética , Tardigrada/anatomía & histología
9.
Nat Rev Genet ; 17(2): 71-80, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26688196

RESUMEN

Five decades have passed since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics and studying the macroevolutionary process of speciation and extinction to estimating a timescale for life on Earth.


Asunto(s)
Teorema de Bayes , Especiación Genética , Evolución Molecular , Fósiles , Genómica/métodos , Modelos Biológicos , Factores de Tiempo
10.
Proc Biol Sci ; 288(1943): 20202719, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33467997

RESUMEN

Osteostraci and Galeaspida are stem-gnathostomes, occupying a key phylogenetic position for resolving the nature of the jawless ancestor from which jawed vertebrates evolved more than 400 million years ago. Both groups are characterized by the presence of rigid headshields that share a number of common morphological traits, in some cases hindering the resolution of their interrelationships and the exact nature of their affinities with jawed vertebrates. Here, we explore the morphological and functional diversity of osteostracan and galeaspid headshields using geometric morphometrics and computational fluid dynamics to constrain the factors that promoted the evolution of their similar morphologies and informing on the ecological scenario under which jawed vertebrates emerged. Phylomorphospace, Mantel analysis and Stayton metrics demonstrate a high degree of homoplasy. Computational fluid dynamics reveals similar hydrodynamic performance among morphologically convergent species, indicating the independent acquisition of the same morphofunctional traits and, potentially, equivalent lifestyles. These results confirm that a number of the characters typically used to infer the evolutionary relationships among galeaspids, osteostracans and jawed vertebrates are convergent in nature, potentially obscuring understanding of the assembly of the gnathostome bodyplan. Ultimately, our results reveal that while the jawless relatives of the earliest jawed vertebrates were ecologically diverse, widespread convergence on the same hydrodynamic adaptations suggests they had reached the limits of their potential ecological diversity-overcome by jawed vertebrates and their later innovations.


Asunto(s)
Maxilares , Vertebrados , Animales , Evolución Biológica , Filogenia
11.
Syst Biol ; 69(1): 124-138, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127936

RESUMEN

Timescales are of fundamental importance to evolutionary biology as they facilitate hypothesis tests of historical evolutionary processes. Through the incorporation of fossil occurrence data, the fossilized birth-death (FBD) process provides a framework for estimating divergence times using more paleontological data than traditional node calibration approaches have allowed. The inclusion of more data can refine evolutionary timescale estimates, but for many taxonomic groups it is computationally infeasible to include all available fossil occurrence data. Here, we utilize both empirical data and a simulation framework to identify approaches to subsampling fossil occurrence data that result in the most accurate estimates of divergence times. To achieve this we assess the performance of the FBD-Skyline model when implementing multiple approaches to incorporating subsampled fossil occurrence data. Our results demonstrate that it is necessary to account for all available fossil occurrence data to achieve the most accurate estimates of clade age. We show that this can be achieved if an empirical Bayes approach, accounting for fossil sampling through time, is applied to the FBD process. Random subsampling of occurrence data can lead to estimates of clade age that are incompatible with fossil evidence if no control over the affinities of fossil occurrences is enforced. Our results call into question the accuracy of previous divergence time studies incorporating the FBD process that have used only a subsample of all available fossil occurrence data.


Asunto(s)
Evolución Biológica , Clasificación/métodos , Fósiles , Modelos Biológicos
12.
Proc Natl Acad Sci U S A ; 115(38): E8909-E8918, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181261

RESUMEN

The animal kingdom exhibits a great diversity of organismal form (i.e., disparity). Whether the extremes of disparity were achieved early in animal evolutionary history or clades continually explore the limits of possible morphospace is subject to continuing debate. Here we show, through analysis of the disparity of the animal kingdom, that, even though many clades exhibit maximal initial disparity, arthropods, chordates, annelids, echinoderms, and mollusks have continued to explore and expand the limits of morphospace throughout the Phanerozoic, expanding dramatically the envelope of disparity occupied in the Cambrian. The "clumpiness" of morphospace occupation by living clades is a consequence of the extinction of phylogenetic intermediates, indicating that the original distribution of morphologies was more homogeneous. The morphological distances between phyla mirror differences in complexity, body size, and species-level diversity across the animal kingdom. Causal hypotheses of morphologic expansion include time since origination, increases in genome size, protein repertoire, gene family expansion, and gene regulation. We find a strong correlation between increasing morphological disparity, genome size, and microRNA repertoire, but no correlation to protein domain diversity. Our results are compatible with the view that the evolution of gene regulation has been influential in shaping metazoan disparity whereas the invasion of terrestrial ecospace appears to represent an additional gestalt, underpinning the post-Cambrian expansion of metazoan disparity.


Asunto(s)
Biodiversidad , Evolución Biológica , Regulación de la Expresión Génica/fisiología , Tamaño del Genoma/fisiología , MicroARNs/fisiología , Animales , Fósiles , Proteínas/genética
13.
Proc Natl Acad Sci U S A ; 115(10): E2274-E2283, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463716

RESUMEN

Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte-tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian-Early Ordovician, origin.


Asunto(s)
Evolución Biológica , Plantas/genética , Biodiversidad , Ecosistema , Fósiles/historia , Historia Antigua , Filogenia , Plantas/clasificación , Factores de Tiempo
14.
Mol Phylogenet Evol ; 147: 106782, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32147574

RESUMEN

Diving beetles and their allies are an almost ubiquitous group of freshwater predators. Knowledge of the phylogeny of the adephagan superfamily Dytiscoidea has significantly improved since the advent of molecular phylogenetics. However, despite recent comprehensive phylogenomic studies, some phylogenetic relationships among the constituent families remain elusive. In particular, the position of the family Hygrobiidae remains uncertain. We address these issues by re-analyzing recently published phylogenomic datasets for Dytiscoidea, using approaches to reduce compositional heterogeneity and adopting a site-heterogeneous mixture model. We obtained a consistent, well-resolved, and strongly supported tree. Consistent with previous studies, our analyses support Aspidytidae as the monophyletic sister group of Amphizoidae, and more importantly, Hygrobiidae as the sister of the diverse Dytiscidae, in agreement with morphology-based phylogenies. Our analyses provide a backbone phylogeny of Dytiscoidea, which lays the foundation for better understanding the evolution of morphological characters, life habits, and feeding behaviors of dytiscoid beetles.


Asunto(s)
Escarabajos/clasificación , Escarabajos/genética , Curaduría de Datos , Heterogeneidad Genética , Filogenia , Aminoácidos/genética , Animales , Teorema de Bayes , Modelos Genéticos
15.
Biol Lett ; 16(7): 20200199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32603646

RESUMEN

Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no 'one-size-fits-all' approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis.


Asunto(s)
Evolución Biológica , Ecología
16.
Proc Biol Sci ; 286(1914): 20191662, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662084

RESUMEN

Whole-genome duplication (WGD) has occurred commonly in land plant evolution and it is often invoked as a causal agent in diversification, phenotypic and developmental innovation, as well as conferring extinction resistance. The ancient and iconic lineage of Equisetum is no exception, where WGD has been inferred to have occurred prior to the Cretaceous-Palaeogene (K-Pg) boundary, coincident with WGD events in angiosperms. In the absence of high species diversity, WGD in Equisetum is interpreted to have facilitated the long-term survival of the lineage. However, this characterization remains uncertain as these analyses of the Equisetum WGD event have not accounted for fossil diversity. Here, we analyse additional available transcriptomes and summarize the fossil record. Our results confirm support for at least one WGD event shared among the majority of extant Equisetum species. Furthermore, we use improved dating methods to constrain the age of gene duplication in geological time and identify two successive Equisetum WGD events. The two WGD events occurred during the Carboniferous and Triassic, respectively, rather than in association with the K-Pg boundary. WGD events are believed to drive high rates of trait evolution and innovations, but analysed trends of morphological evolution across the historical diversity of Equisetum provide little evidence for further macroevolutionary consequences following WGD. WGD events cannot have conferred extinction resistance to the Equisetum lineage through the K-Pg boundary since the ploidy events occurred hundreds of millions of years before this mass extinction and we find evidence of extinction among fossil polyploid Equisetum lineages. Our findings precipitate the need for a review of the proposed roles of WGDs in biological innovation and extinction survival in angiosperm and non-angiosperm lineages alike.


Asunto(s)
Evolución Biológica , Equisetum/genética , Genoma de Planta , Plantas/genética , Duplicación de Gen
17.
New Phytol ; 222(1): 565-575, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30411803

RESUMEN

Unraveling the phylogenetic relationships between the four major lineages of terrestrial plants (mosses, liverworts, hornworts, and vascular plants) is essential for an understanding of the evolution of traits specific to land plants, such as their complex life cycles, and the evolutionary development of stomata and vascular tissue. Well supported phylogenetic hypotheses resulting from different data and methods are often incongruent due to processes of nucleotide evolution that are difficult to model, for example substitutional saturation and composition heterogeneity. We reanalysed a large published dataset of nuclear data and modelled these processes using degenerate-codon recoding and tree-heterogeneous composition substitution models. Our analyses resolved bryophytes as a monophyletic group and showed that the nonnonmonophyly of the clade that is supported by the analysis of nuclear nucleotide data is due solely to fast-evolving synonymous substitutions. The current congruence among phylogenies of both nuclear and chloroplast analyses lent considerable support to the conclusion that the bryophytes are a monophyletic group. An initial split between bryophytes and vascular plants implies that the bryophyte life cycle (with a dominant gametophyte nurturing an unbranched sporophyte) may not be ancestral to all land plants and that stomata are likely to be a symplesiomorphy among embryophytes.


Asunto(s)
Briófitas/metabolismo , Proteínas Nucleares/metabolismo , Filogenia , Aminoácidos/genética , Nucleótidos/genética
18.
Syst Biol ; 67(2): 354-362, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106675

RESUMEN

Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data.


Asunto(s)
Clasificación/métodos , Filogenia , Algoritmos , Simulación por Computador
19.
Nature ; 502(7472): 546-9, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24132236

RESUMEN

Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the 'inside-out' hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.


Asunto(s)
Evolución Biológica , Fósiles , Diente/anatomía & histología , Vertebrados/anatomía & histología , Vertebrados/clasificación , Animales , Maxilares , Nevada , Filogenia , Esqueleto , Sincrotrones , Tomografía por Rayos X , Wyoming
20.
Bioessays ; 39(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28054378

RESUMEN

MicroRNAs are non-coding regulators of gene expression and key factors in development, disease, and targets for bioengineering. Consequently, microRNAs have become essential elements of already burgeoning draft plant genome descriptions where their annotation is often particularly poor, contributing unduly to the corruption of public databases. Using the Citrus sinensis as an example, we highlight and review common failings of miRNAome annotations. Understanding and exploiting the role of miRNAs in plant biology will be stymied unless the research community acts decisively to improve the accuracy of miRNAome annotations. We encourage genome annotation teams to do it right or not at all.


Asunto(s)
Genoma de Planta , MicroARNs , Anotación de Secuencia Molecular , Plantas/genética , Citrus sinensis/genética , Guías como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA