Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 14(3): e1007241, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29494583

RESUMEN

Interplay between apicobasal cell polarity modules and the cytoskeleton is critical for differentiation and integrity of epithelia. However, this coordination is poorly understood at the level of gene regulation by transcription factors. Here, we establish the Drosophila activating transcription factor 3 (atf3) as a cell polarity response gene acting downstream of the membrane-associated Scribble polarity complex. Loss of the tumor suppressors Scribble or Dlg1 induces atf3 expression via aPKC but independent of Jun-N-terminal kinase (JNK) signaling. Strikingly, removal of Atf3 from Dlg1 deficient cells restores polarized cytoarchitecture, levels and distribution of endosomal trafficking machinery, and differentiation. Conversely, excess Atf3 alters microtubule network, vesicular trafficking and the partition of polarity proteins along the apicobasal axis. Genomic and genetic approaches implicate Atf3 as a regulator of cytoskeleton organization and function, and identify Lamin C as one of its bona fide target genes. By affecting structural features and cell morphology, Atf3 functions in a manner distinct from other transcription factors operating downstream of disrupted cell polarity.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Factor de Transcripción Activador 3/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Inmunoprecipitación de Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Endosomas/metabolismo , Ojo/crecimiento & desarrollo , Discos Imaginales/citología , Discos Imaginales/fisiología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Larva , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Motivos de Nucleótidos/fisiología , Proteína Quinasa C/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Hum Mol Genet ; 27(10): 1772-1784, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29528393

RESUMEN

Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Unión Neuromuscular/genética , Atrofias Musculares Espinales de la Infancia/genética , Animales , Modelos Animales de Enfermedad , Drosophila , Complejo Dinactina/genética , Dineínas/genética , Aparato de Golgi/genética , Aparato de Golgi/patología , Humanos , Microtúbulos/genética , Microtúbulos/patología , Mutación , Mutación Missense/genética , Unión Neuromuscular/patología , Linaje , Unión Proteica , Atrofias Musculares Espinales de la Infancia/fisiopatología
3.
Cell Rep ; 27(10): 3019-3033.e5, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167145

RESUMEN

Homeostatic renewal and stress-related tissue regeneration rely on stem cell activity, which drives the replacement of damaged cells to maintain tissue integrity and function. The Jun N-terminal kinase (JNK) signaling pathway has been established as a critical regulator of tissue homeostasis both in intestinal stem cells (ISCs) and mature enterocytes (ECs), while its chronic activation has been linked to tissue degeneration and aging. Here, we show that JNK signaling requires the stress-inducible transcription factor Ets21c to promote tissue renewal in Drosophila. We demonstrate that Ets21c controls ISC proliferation as well as EC apoptosis through distinct sets of target genes that orchestrate cellular behaviors via intrinsic and non-autonomous signaling mechanisms. While its loss appears dispensable for development and prevents epithelial aging, ISCs and ECs demand Ets21c function to mount cellular responses to oxidative stress. Ets21c thus emerges as a vital regulator of proliferative homeostasis in the midgut and a determinant of the adult healthspan.


Asunto(s)
Envejecimiento , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Apoptosis , Proliferación Celular , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas del Huevo/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Mucosa Intestinal/citología , Longevidad , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ets/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
4.
Mol Cell Biol ; 32(19): 3949-62, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851689

RESUMEN

Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.


Asunto(s)
Factor de Transcripción Activador 3/inmunología , Proteínas de Drosophila/inmunología , Drosophila melanogaster/fisiología , Homeostasis , Inmunidad , Metabolismo de los Lípidos , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/uso terapéutico , Animales , Digestión , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/microbiología , Grasas/metabolismo , Femenino , Expresión Génica , Regulación de la Expresión Génica , Humanos , Mutación , Obesidad/genética , Inanición/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA