Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 17(11): e0277300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36378672

RESUMEN

BACKGROUND: Phase space is a mechanical systems approach and large-scale data representation of an object in 3-dimensional space. Whether such techniques can be applied to predict left ventricular pressures non-invasively and at the point-of-care is unknown. OBJECTIVE: This study prospectively validated a phase space machine-learned approach based on a novel electro-mechanical pulse wave method of data collection through orthogonal voltage gradient (OVG) and photoplethysmography (PPG) for the prediction of elevated left ventricular end diastolic pressure (LVEDP). METHODS: Consecutive outpatients across 15 US-based healthcare centers with symptoms suggestive of coronary artery disease were enrolled at the time of elective cardiac catheterization and underwent OVG and PPG data acquisition immediately prior to angiography with signals paired with LVEDP (IDENTIFY; NCT #03864081). The primary objective was to validate a ML algorithm for prediction of elevated LVEDP using a definition of ≥25 mmHg (study cohort) and normal LVEDP ≤ 12 mmHg (control cohort), using AUC as the measure of diagnostic accuracy. Secondary objectives included performance of the ML predictor in a propensity matched cohort (age and gender) and performance for an elevated LVEDP across a spectrum of comparative LVEDP (<12 through 24 at 1 mmHg increments). Features were extracted from the OVG and PPG datasets and were analyzed using machine-learning approaches. RESULTS: The study cohort consisted of 684 subjects stratified into three LVEDP categories, ≤12 mmHg (N = 258), LVEDP 13-24 mmHg (N = 347), and LVEDP ≥25 mmHg (N = 79). Testing of the ML predictor demonstrated an AUC of 0.81 (95% CI 0.76-0.86) for the prediction of an elevated LVEDP with a sensitivity of 82% and specificity of 68%, respectively. Among a propensity matched cohort (N = 79) the ML predictor demonstrated a similar result AUC 0.79 (95% CI: 0.72-0.8). Using a constant definition of elevated LVEDP and varying the lower threshold across LVEDP the ML predictor demonstrated and AUC ranging from 0.79-0.82. CONCLUSION: The phase space ML analysis provides a robust prediction for an elevated LVEDP at the point-of-care. These data suggest a potential role for an OVG and PPG derived electro-mechanical pulse wave strategy to determine if LVEDP is elevated in patients with symptoms suggestive of cardiac disease.


Asunto(s)
Disfunción Ventricular Izquierda , Humanos , Disfunción Ventricular Izquierda/diagnóstico , Presión Sanguínea , Sistemas de Atención de Punto , Análisis de la Onda del Pulso , Aprendizaje Automático , Función Ventricular Izquierda , Presión Ventricular , Volumen Sistólico
2.
Comput Methods Programs Biomed ; 202: 105970, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33610035

RESUMEN

BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD) and heart failure are the most common cardiovascular diseases. Non-invasive diagnostic testing for CAD requires radiation, heart rate acceleration, and imaging infrastructure. Early detection of left ventricular dysfunction is critical in heart failure management, the best measure of which is an elevated left ventricular end-diastolic pressure (LVEDP) that can only be measured using invasive cardiac catheterization. There exists a need for non-invasive, safe, and fast diagnostic testing for CAD and elevated LVEDP. This research employs nonlinear dynamics to assess for significant CAD and elevated LVEDP using non-invasively acquired photoplethysmographic (PPG) and three-dimensional orthogonal voltage gradient (OVG) signals. PPG (variations of the blood volume perfusing the tissue) and OVG (mechano-electrical activity of the heart) signals represent the dynamics of the cardiovascular system. METHODS: PPG and OVG were simultaneously acquired from two cohorts, (i) symptomatic subjects that underwent invasive cardiac catheterization, the gold standard test (408 CAD positive with stenosis≥ 70% and 186 with LVEDP≥ 20 mmHg) and (ii) asymptomatic healthy controls (676). A set of Poincaré-based synchrony features were developed to characterize the interactions between the OVG and PPG signals. The extracted features were employed to train machine learning models for CAD and LVEDP. Five-fold cross-validation was used and the best model was selected based on the average area under the receiver operating characteristic curve (AUC) across 100 runs, then assessed using a hold-out test set. RESULTS: The Elastic Net model developed on the synchrony features can effectively classify CAD positive subjects from healthy controls with an average validation AUC=0.90±0.03 and an AUC= 0.89 on the test set. The developed model for LVEDP can discriminate subjects with elevated LVEDP from healthy controls with an average validation AUC=0.89±0.03 and an AUC=0.89 on the test set. The feature contributions results showed that the selection of a proper registration point for Poincaré analysis is essential for the development of predictive models for different disease targets. CONCLUSIONS: Nonlinear features from simultaneously-acquired signals used as inputs to machine learning can assess CAD and LVEDP safely and accurately with an easy-to-use, portable device, utilized at the point-of-care without radiation, contrast, or patient preparation.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Hemodinámica , Humanos , Volumen Sistólico , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA