Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Biometeorol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630139

RESUMEN

Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.

2.
New Phytol ; 225(6): 2484-2497, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31696932

RESUMEN

The ratio of leaf internal (ci ) to ambient (ca ) partial pressure of CO2 , defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation model uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least-cost optimality hypothesis for modelling historical changes in χ over the 1951-2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely dated tree-ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the intersite variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant-available soil water and other site-specific characteristics might improve the predictions.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Isótopos de Carbono , Hojas de la Planta , Agua
3.
Glob Chang Biol ; 25(4): 1296-1314, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30548989

RESUMEN

Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short-term extreme events and gradual environmental changes are quite uncertain across the species' limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short- and long-term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species' vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species-specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species-specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine-scale limitations of the climate data generated by global climate models.

4.
Glob Chang Biol ; 24(3): 1012-1028, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29030903

RESUMEN

In forests, the increase in atmospheric CO2 concentrations (Ca ) has been related to enhanced tree growth and intrinsic water-use efficiency (iWUE). However, in drought-prone areas such as the Mediterranean Basin, it is not yet clear to what extent this "fertilizing" effect may compensate for drought-induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960-2012 using annually resolved tree-ring width and δ13 C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci ), and consequently iWUE. Different trends in the theoretical gas-exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca , except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca . Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%-71.4%) than in oak stands (15.8%-46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the "fertilizing" effect of rising Ca , whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter-annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.


Asunto(s)
Pinus sylvestris/fisiología , Quercus/fisiología , Agua , Demografía , Bosques , Región Mediterránea
5.
Glob Chang Biol ; 23(7): 2915-2927, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27976473

RESUMEN

Forest performance is challenged by climate change but higher atmospheric [CO2 ] (ca ) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process-based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010-2100 for the high-emission RCP8.5 and low-emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected ca ; (ii) constant ca  = 390 ppm, to test a purely climate-driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing ca , enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long-term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non-negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing ca and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss-performance at high ca above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO2 ].


Asunto(s)
Carbono , Cambio Climático , Bosques , Dióxido de Carbono , Sequías , Árboles
6.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25156251

RESUMEN

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Asunto(s)
Ciclo del Carbono/fisiología , Dióxido de Carbono/metabolismo , Cambio Climático , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , Ciclo Hidrológico/fisiología , Isótopos de Carbono/análisis , Europa (Continente) , Geografía , Factores de Tiempo
7.
Sci Total Environ ; 926: 172049, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552974

RESUMEN

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.


Asunto(s)
Quercus , Árboles , Quercus/fisiología , Sequías , Clima , Estaciones del Año , Bosques , Cambio Climático
8.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38782287

RESUMEN

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Asunto(s)
Cambio Climático , Sequías , Fagus , Fagus/crecimiento & desarrollo , Fagus/fisiología , Bosques , Árboles/crecimiento & desarrollo , Árboles/fisiología
9.
Tree Physiol ; 42(11): 2203-2223, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35796563

RESUMEN

Tree-ring intra-annual stable isotopes (δ13C and δ18O) are powerful tools for revealing plant ecophysiological responses to climatic extremes. We analyzed interannual and fine-scale intra-annual variability of tree-ring δ13C and δ18O in Chinese red pine (Pinus massoniana) from southeastern China to explore environmental drivers and potential trade-offs between the main physiological controls. We show that wet season relative humidity (May-October RH) drove interannual variability of δ18O and intra-annual variability of tree-ring δ18O. It also drove intra-annual variability of tree-ring δ13C, whereas interannual variability was mainly controlled by February-May temperature and September-October RH. Furthermore, intra-annual tree-ring δ18O variability was larger during wet years compared with dry years, whereas δ13C variability was lower during wet years compared with dry years. As a result of these differences in intra-annual variability amplitude, process-based models (we used the Roden model for δ18O and the Farquhar model for δ13C) captured the intra-annual δ18O pattern better in wet years compared with dry years, whereas intra-annual δ13C pattern was better simulated in dry years compared with wet years. This result suggests a potential asymmetric bias in process-based models in capturing the interplay of the different mechanistic processes (i.e., isotopic source and leaf-level enrichment) operating in dry versus wet years. We therefore propose an intra-annual conceptual model considering a dynamic trade-off between the isotopic source and leaf-level enrichment in different tree-ring parts to understand how climate and ecophysiological processes drive intra-annual tree-ring stable isotopic variability under humid climate conditions.


Asunto(s)
Pinus , Árboles , Humedad , Isótopos de Oxígeno/análisis , Isótopos de Carbono/análisis
10.
Sci Total Environ ; 826: 153773, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35182651

RESUMEN

The Mediterranean region is expected to be highly impacted by global warming, although the uncertainty of future scenarios, particularly about precipitation patterns remains quite large. To better predict shifts in its current climate system and to test models, more regional climate records are needed spanning longer than the instrumental period. Here we provide a high-resolution reconstruction of autumn precipitation for the Central Pyrenees since 1500 CE based on annual calcite sublayer widths from Montcortès Lake (Central southern Pyrenees) varved sediments. The 500-yr calcite data series was detrended and calibrated with instrumental climate records by applying correlations and cross-correlations to regional precipitation anomalies. Highest relationships were obtained between a composite calcite series and autumn precipitation anomalies for the complete calibration period (1900-2002) and for the two halves of the full period. Applied statistical tests were significant, evidencing that the climatic signal could be reconstructed. The reconstructed precipitation anomalies show interdecadal shifts, and rainfall decrease within the coldest period of the LIA and during the second half of the 20th century, probably associated to current Global Warming. Neither increasing nor decreasing linear trends or periods of extreme precipitation events were identified. Our results are coherent with other palaeohydrological reconstructions for northern Iberian Peninsula. Correlations between the predicted autumn precipitation and the main teleconnections -NAO, ENSO and WEMO- were weak, although a potential relationship with the Atlantic Multidecadal Oscillation (AMO) pattern is suggested. The obtained reconstruction provides the first estimations of regional autumn precipitation shifts in the Central Pyrenees and is one of the few reconstructions that cover annual-to-century scale climate variability of precipitation in the Mediterranean region from the end of the Litte Ice Age (LIA) to the current period of Global Warming.


Asunto(s)
Carbonato de Calcio , Lagos , Calentamiento Global , Región Mediterránea , Estaciones del Año
11.
Commun Biol ; 5(1): 163, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273334

RESUMEN

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.


Asunto(s)
Fagus , Cambio Climático , Sequías , Bosques , Árboles
12.
Nat Commun ; 13(1): 2015, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440102

RESUMEN

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Asunto(s)
Fagus , Movimientos del Aire , Carbono , Cambio Climático , Bosques
13.
Sci Total Environ ; 784: 147222, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34088042

RESUMEN

Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.


Asunto(s)
Quercus , Cambio Climático , Sequías , Ecosistema , Europa (Continente) , Bosques , Árboles
14.
Front Plant Sci ; 11: 706, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595660

RESUMEN

Tree species have good tolerance to a range of environmental conditions, though their ability to respond and persist to environmental changes is dramatically reduced at the rear-edge distribution limits. At those edges, gene flow conferring adaptation is impaired due to lack of populations at lower latitudes. Thus, trees mainly rely on phenotypic changes to buffer against long-term environmental changes. Interspecific hybridization may offer an alternative mechanism in the generation of novel genetic recombinants that could be particularly valuable to ensure persistence in geographically isolated forests. In this paper, we take advantage of the longevity of a temperate-submediterranean mixed-oak forest to explore the long-term impact of environmental changes on two different oak species and their hybrid. Individual trees were genetically characterized and classified into three groups: pure Quercus petraea (Matt.), Liebl, pure Q. pyrenaica Willd, and hybrids. We calculated basal area increment and intrinsic water-use efficiency (iWUE) from tree-ring width and δ13C per genetic group, respectively. Tree-growth drivers were assessed using correlation analyses and generalized linear mixed models for two contrasting climatic periods: (1880-1915, colder with [CO2] < 303 ppm; and 1980-2015, warmer with [CO2] > 338 ppm). The three genetic groups have increased radial growth and iWUE during the last decades, being the least drought-tolerant QuPe the most sensitive species to water stress. However, no significant differences were found among genetic groups neither in mean growth rate nor in mean iWUE. Furthermore, little differences were found in the response to climate among groups. Genetic groups only differed in the relationship between δ13C and temperature and precipitation during the earlier period, but such a difference disappeared during the recent decades. Climate change may have promoted species-level convergence as a response to environment-induced growth limitations, which translated in synchronized growth and response to climate as well as a tighter stomatal control and increased iWUE across coexisting oak species.

15.
Tree Physiol ; 37(7): 903-914, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28402468

RESUMEN

Drought is a key limiting factor for tree growth in the Mediterranean Basin. However, the variability in acclimation via xylem traits is largely unknown. We studied tree growth and vessel features of Quercus petraea (Matt.) Lieb. in five marginal stands across southern Europe. Tree-ring width (TRW), mean earlywood vessel area (MVA) and number of earlywood vessels (NV) as well as theoretical hydraulic conductivity (Kh) chronologies were developed for the period 1963-2012. Summer drought signals were consistent among TRW chronologies; however, climatic responses of vessel features differed considerably among sites. At the three xeric sites, previous year's summer drought had a negative effect on MVA and a positive effect on NV. In contrast, at the two mesic sites, current year's spring drought negatively affected NV, while exerting a positive influence on MVA. In both cases, Kh was not altered by this xylem adjustment. All variables revealed identical east-west geographical patterns in growth and anatomical features. Sessile oak copes with drought in different ways: at xeric sites and after unfavourable previous summer conditions more but smaller vessels are built, lowering vulnerability to cavitation, whereas at mesic sites, dry springs partly lead to tree-rings with wider but fewer vessels. The variability of vessel-related features displays a similar geographical dipole in the Mediterranean Basin previously described for tree growth by other studies.


Asunto(s)
Clima , Sequías , Quercus/fisiología , Xilema/fisiología , Aclimatación , Europa (Continente)
16.
Front Plant Sci ; 8: 598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473841

RESUMEN

Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species' responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy.

17.
PLoS One ; 11(4): e0153888, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100092

RESUMEN

Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935-2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia.


Asunto(s)
Cambio Climático , Sequías , Juniperus/fisiología , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Asia , Biodiversidad , Ecosistema
19.
Sci Total Environ ; 409(11): 2244-51, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21402397

RESUMEN

δ(13)C and δ(18)O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the δ(13)C and the δ(18)O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing δ(18)O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/métodos , Oxígeno/análisis , Árboles/química , Madera/química , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Estaciones del Año , Árboles/crecimiento & desarrollo , Madera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA