Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 22(23): 7935-43, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27106294

RESUMEN

Reaction of [Si(3,5-Me2 pz)4 ] (1) with [Cu(MeCN)4 ][BF4 ] (2) gave the mono- and dinuclear copper complexes [Cu2 ((F) Tp*)2 ] (3) and [Cu((F) Tp*)2 ] (4). Both complexes contain the so-far unprecedented boron-fluorinated (F) Tp* ligand ([FB(3,5-Me2 pz)3 ](-) with pz=pyrazolyl) originating from 1, acting as a pyrazolyl transfer reagent, and the [BF4 ](-) counter anion of 2, serving as the source of the {BF} entity. The solid-state structures as well as the NMR and EPR spectroscopic characteristics of the complexes were elaborated. Pulsed gradient spin echo (PGSE) experiments revealed that 3 retains (almost entirely) its dimeric structure in benzene, whereas dimer cleavage and formation of acetonitrile adducts, presumably [Cu((F) Tp*)(MeCN)], is observed in acetonitrile. The short Cu⋅⋅⋅Cu distance of 269.16 pm in the solid-state is predicted by DFT calculations to be dictated by dispersion interactions between all atoms in the complex (the Cu-Cu dispersion contribution itself is only very small). As revealed by cyclic voltammetry studies, 3 shows an irreversible (almost quasi-reversible at higher scan rates) oxidation process centred at E(pa) =-0.23 V (E(0) 1/2 =-0.27 V) (vs. Fc/Fc(+) ). Oxidation reactions on a preparative scale with one equivalent of the ferrocenium salt [Fc][BF4 ] (very slow reaction) or air (fast reaction) furnished blue crystals of the mononuclear copper(II) complex [Cu((F) Tp*)2 ] (4). As expected for a Jahn-Teller-active system, the coordination sphere around copper(II) is strongly distorted towards a stretched octahedron, in accordance with EPR spectroscopic findings.

2.
Langmuir ; 32(23): 5946-54, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27182683

RESUMEN

Many biophysical studies of protein transduction domains (PTDs) and their synthetic mimics (PTDMs) focus on the interaction between the polycationic PTD(M) and anionic phospholipid surfaces. Most, but not all, of these studies suggest that these cation-anion interactions are vital for membrane activity. In this study, the effect of anionic lipid content on PTDM performance was examined for three ring-opening metathesis (ROMP)-based PTDMs with varying hydrophobicity. Using a series of dye-loaded vesicles with gradually increasing anionic lipid content, we saw that increased anionic lipid content inhibited dye release caused by these PTDMs. This result is the opposite of what was found in studies with poly- and oligo-arginine. While the effect is reduced for more hydrophobic PTDMs, it is observable even with the most hydrophobic PTDMs of our test panel. Additional experiments included dynamic light scattering and zeta potential measurements to measure size as a function of vesicle surface charge in the presence of increasing PTDM concentration and surface plasmon resonance spectroscopy to quantify binding between PTDMs and surface-bound lipid layers with varying anion content. The results from these measurements suggested that PTDM hydrophobicity, not cation-anion interactions, is the main driving force of the interaction between our PTDMs and the model membranes investigated. This suggests a model of interaction where surface association and membrane insertion are driven by PTDM hydrophobicity, while anionic lipid content serves primarily to "pin" the PTDM to the membrane surface and limit insertion.


Asunto(s)
Proteínas de la Membrana/química , Membranas Artificiales , Péptidos/química , Fosfolípidos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos
3.
ACS Macro Lett ; 4(12): 1337-1340, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489747

RESUMEN

Regeneration of functional polymer surfaces after damage or contamination is an unresolved scientific challenge, and also of practical importance. In this proof-of-concept study, we present a method to regenerate a functional surface property using a polymer multi-layer architecture. This is exemplified using antimicrobially active surfaces. The idea is to shed the top layer of the polymer layer stack, like a reptile shedding its skin. The proof-of-concept stack consists of two antimicrobial layers and a degradable interlayer. Shedding of the top layer is enabled by degrading that interlayer. The shedding process was analyzed by quantitative fluorescence microscopy, ellipsometry, and FTIR spectroscopy. Antimicrobial assays revealed that the functionality of the emerging antimicrobial layer was fully retained after shedding.

4.
J Mater Chem B ; 3(30): 6224-6238, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32262741

RESUMEN

We present a synthetic platform based on photo-induced thiol-ene chemistry, by which surface-attached networks from antimicrobial poly(oxonorbornene) (so-called polymeric synthetic mimics of antimicrobial peptides, SMAMPs) could be easily obtained. By systematically varying hydrophobicity and charge density, surface-attached polymer networks with high antimicrobial activity and excellent cell compatibility were obtained. For the homopolymer networks with constant charge density, antimicrobial activity increased systematically with increasing hydrophobicity (i.e. decreasing swellability and apparent surface energy). Irrespective of charge density, the antimicrobial activity of all networks correlated with the acid constant pK and the isoelectric point (IEP) - the lower pK and IEP, the higher the antimicrobial activity. The cell compatibility of the networks increased with increasing swellability and apparent surface energy, and decreased with increasing charge density. The data corroborates that the mechanism of action of antimicrobial polymer surfaces depends on at least two mechanistic steps, one of which is hydrophobicity-driven and the other charge related. Therefore, we suggest a modified mechanistic model with a charge-driven and a hydrophobicity-driven step. For antimicrobial networks that only varied in hydrophobicity, the antimicrobial activities on surfaces and in solution also correlated - the higher the activity in solution, the higher the activity on surfaces. Thus, the hydrophobicity-driven step for activity on surfaces may be similar to the one in solution. Cell compatibility of SMAMPs in solution and on surfaces also showed a systematic positive correlation for all polymers, therefore this property also depends on the net hydrophobic balance of the polymer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA