Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 15(14): 7669-7680, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961720

RESUMEN

The rates of overweight and obesity around the world have increased in past years. The body's adipose tissue stimulates the antioxidant and oxidation imbalance capacity at the cellular level. This scenario favors an inflammatory low-grade systemic condition starting with insulin resistance, which in turn may involve diabetes mellitus type 2 and cognitive decline afterward. Neurological diseases have been correlated to senile age diseases over time. This scenario calls for a change in the incidence of obesity in the younger generation. An unhealthy dietary consumption together with sedentary habits might lead to poor gut absorption of nutrients. Several plants and foods have bioactive compounds that can reduce or inhibit radical scavengers, reactive oxygen species, and metal ion complexes that threaten the cerebral defense system. The bitter acids from hops (Humulus lupulus L.) have been demonstrated to have promising effects on lipid and carbohydrate metabolism improvement, reducing inflammatory responses through alpha acids, beta acids, and analogs action. Therefore, the current study aimed to investigate the bioactivity of hop bitter acids in obese and lean mice. For that, a dry hop extract (DHE) was obtained by applying carbon dioxide as the fluid of supercritical extraction. Afterward, seventy-eight male mice of the C57BL/6J strain were weighed and randomly distributed into six groups of 13 animals each according to the diet offered: (NO) normolipidic diet, (NO1) normolipidic diet containing 0.35% alpha acids, (NO2) normolipidic diet containing 3.5% alpha acids, (HP) hyperlipidic diet, (HP1) hyperlipidic diet containing 0.35% alpha acids, and (HP2) hyperlipidic diet containing 3.5% alpha acids. After applying the glycemic tolerance and insulin tolerance tests, a better stabilization of glycemia levels and weight gain among those animals fed with DHE (NO2 and HP2) were observed in comparison to the obese control group (HP) (p < 0.05). There was also an amelioration of antioxidant capacity observed by checking the enzymatic profile by SOD and an apparent mitigation of brain degeneration by checking GSK3ß and p-IRS1 proteins expression (p < 0.05). The y-maze cognitive test applied to highlight possible obesity-harmful animal brains did not indicate a statistical difference between the groups. Although the weekly dietary intake between the obese HP2 group (33.32 ± 4.11, p < 0.05) and control HP (42.3 ± 5.88, p < 0.05) was different. The bioactive compounds present in DHE have demonstrated relevant effects on glycemic control, insulin signaling, and the consequent modulatory action of the obesity-related markers with the brain's inflammatory progression.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Humulus , Ratones Endogámicos C57BL , Obesidad , Extractos Vegetales , Humulus/química , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Masculino , Extractos Vegetales/farmacología , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Glucemia/metabolismo , Antioxidantes/farmacología , Humanos , Resistencia a la Insulina
2.
Food Res Int ; 130: 108856, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32156341

RESUMEN

The aim of this study was to investigate the effects of high hydrostatic pressure (HHP) on the inactivation of Lactobacillus fructivorans, on the inactivation of Alicyclobacillus acidoterrestris spores and on the extraction of anthocyanins and total phenolics from açaí pulp. The tested conditions comprised pressures of 400-600 MPa, treatment times of 5-15 min, and temperatures of 25 °C and 65 °C. Results were compared to those of conventional thermal treatments (85 °C/1 min). Regarding A. acidoterrestris spores, applying HHP for 13.5 min, resulted in a value of four-decimal reduction. L. fructivorans presented considerable sensitivity to HHP treatment, achieving inactivation rates above 6.7 log cycles at process conditions at 600 MPa and 65 °C for 5 min. All samples of açaí pulp processed showed absence of thermotolerant coliforms during the 28 days of refrigerated storage (shelf life study). The açaí pulps processed by HHP (600 MPa/5 min/25 °C) had anthocyanin extraction increased by 37% on average. In contrast, conventional thermal treatment reduced anthocyanin content by 16.3%. For phenolic compounds, the process at 600 MPa/5 min/65 °C increases extraction by 10.25%. A combination of HHP treatment and moderate heat (65 °C) was shown to be an alternative to thermal pasteurization, leading to microbiologically safe products while preserving functional compounds.


Asunto(s)
Euterpe/química , Euterpe/microbiología , Manipulación de Alimentos/métodos , Viabilidad Microbiana , Fitoquímicos/química , Presión Hidrostática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA