Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Med ; 3(9): 1016-20, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9288729

RESUMEN

The Alzheimer amyloid precursor protein (APP) is cleaved by several proteases, the most studied, but still unidentified ones, are those involved in the release of a fragment of APP, the amyloidogenic beta-protein A beta. Proteolysis by gamma-secretase is the last processing step resulting in release of A beta. Cleavage occurs after residue 40 of A beta [A beta(1-40)], occasionally after residue 42 [A beta(1-42)]. Even slightly increased amounts of this A beta(1-42) might be sufficient to cause Alzheimer's disease (AD) (reviewed in ref. 1, 2). It is thus generally believed that inhibition of this enzyme could aid in prevention of AD. Unexpectedly we have identified in neurons the endoplasmic reticulum (ER) as the site for generation of A beta(1-42) and the trans-Golgi network (TGN) as the site for A beta(1-40) generation. It is interesting that intracellular generation of A beta seemed to be unique to neurons, because we found that nonneuronal cells produced significant amounts of A beta(1-40) and A beta(1-42) only at the cell surface. The specific production of the critical A beta isoform in the ER of neurons links this compartment with the generation of A beta and explains why primarily ER localized (mutant) proteins such as the presenilins could induce AD. We suggest that the earliest event taking place in AD might be the generation of A beta(1-42) in the ER.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/biosíntesis , Fragmentos de Péptidos/biosíntesis , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide , Animales , Ácido Aspártico Endopeptidasas , Células COS , Compartimento Celular , Membrana Celular/metabolismo , Endopeptidasas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Microscopía Inmunoelectrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas
2.
Neuroscience ; 159(2): 657-69, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19166906

RESUMEN

ACSL4 is a gene involved in non-syndromic X-linked mental retardation. It encodes for a ubiquitous protein that adds coenzyme A to long-chain fatty acids, with a high substrate preference for arachidonic acid. It presents also a brain-specific isoform deriving from an alternative splicing and containing 41 additional N-terminal amino acids. To start to unravelling the link between ACSL4 and mental retardation, we have performed molecular and cell biological studies. By retro-transcription polymerase chain reaction analyses we identified a new transcript with a shorter 5'-UTR region. By immunofluorescence microscopy in embryonic rat hippocampal neurons we report that ACSL4 is associated preferentially to endoplasmic reticulum tubules. ACSL4 knockdown by siRNAs in hippocampal neurons indicated that this protein is largely dispensable for these cells' gross architectural features (i.e. axonal and dendritic formation and final length) yet it is required for the presence of normal spines. In fact, reduced levels of ACSL4 led to a significant reduction in dendritic spine density and an alteration in spine/filopodia distribution. The possible mechanisms behind this phenotype are discussed.


Asunto(s)
Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Espinas Dendríticas/fisiología , Neuronas/citología , Actinas/metabolismo , Empalme Alternativo/genética , Animales , Calreticulina/metabolismo , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Embrión de Mamíferos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Neuronas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Factores de Tiempo , Transfección/métodos
3.
J Cell Biol ; 119(1): 123-37, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-1527164

RESUMEN

The endocytic pathways from the axonal and dendritic surfaces of cultured polarized hippocampal neurons were examined. The dendrites and cell body contained extensive networks of tubular early endosomes which received endocytosed markers from the somatodendritic domain. In axons early endosomes were confined to presynaptic terminals and to varicosities. The somatodendritic but not the presynaptic early endosomes were labeled by internalized transferrin. In contrast to early endosomes, late endosomes and lysosomes were shown to be predominantly located in the cell body. Video microscopy was used to follow the transport of internalized markers from the periphery of axons and dendrites back to the cell body. Labeled structures in both domains moved unidirectionally by retrograde fast transport. Axonally transported organelles were sectioned for EM after video microscopic observation and shown to be large multivesicular body-like structures. Similar structures accumulated at the distal side of an axonal lesion. Multivesicular bodies therefore appear to be the major structures mediating transport of endocytosed markers between the nerve terminals and the cell body. Late endocytic structures were also shown to be highly mobile and were observed moving within the cell body and proximal dendritic segments. The results show that the organization of the endosomes differs in the axons and dendrites of cultured rat hippocampal neurons and that the different compartments or stages of the endocytic pathways can be resolved spatially.


Asunto(s)
Axones/metabolismo , Dendritas/metabolismo , Endocitosis/fisiología , Animales , Axones/ultraestructura , Células Cultivadas , Dendritas/ultraestructura , Técnica del Anticuerpo Fluorescente , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Microscopía Electrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Orgánulos/metabolismo , Orgánulos/ultraestructura , Ratas , Grabación en Video
4.
J Cell Biol ; 113(2): 261-74, 1991 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2010463

RESUMEN

The interaction between late endocytic structures and microtubules in polarized cells was studied using a procedure previously shown to cause microtubule-dependent redistribution of lysosomes in fibroblasts and macrophages (Heuser, J. 1989. J. Cell Biol. 108:855-864). In cultured rat hippocampal neurons, low cytoplasmic pH caused cation-independent mannose-6-phosphate receptor-enriched structures to move out of the cell body and into the processes. In filter grown MDCK cells lowering the cytosolic pH to approximately 6.5 caused late endosomes to move to the base of the cell and this process was shown to be microtubule dependent. Alkalinization caused a shift in distribution towards the apical pole of the cell. The results are consistent with low pH causing the redistribution of late endosomes towards the plus ends of the microtubules. In MDCK cells the microtubules orientated vertically in the cell may play a role in this process. The shape changes that accompanied the redistribution of the late endosomes in MDCK cells were examined by electron microscopy. On low pH treatment fragmentation of the late endosomes was observed whereas after microtubule depolymerization individual late endosomal structures appeared to fuse together. The late endosomes of the MDCK cell appear to be highly pleomorphic and dependent on microtubules for their form and distribution in the cell.


Asunto(s)
Microtúbulos/metabolismo , Neuronas/metabolismo , Orgánulos/metabolismo , Animales , Bovinos , Línea Celular , Endocitosis , Epitelio/metabolismo , Epitelio/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Concentración de Iones de Hidrógeno , Riñón/citología , Riñón/metabolismo , Riñón/ultraestructura , Lisosomas/metabolismo , Neuronas/ultraestructura , Ratas
5.
J Cell Biol ; 123(5): 1197-206, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8245126

RESUMEN

Previous studies have shown that neuronal cells in culture can switch neurotransmitters when grown in the presence of different target cells. To examine whether this plasticity extends to structural proteins, we cocultured hippocampal neurons and pituitary-derived neuroendocrine (AtT20) cells with astrocytes, kidney epithelial cells, or skeletal muscle cells. As a marker of phenotypic change we used the cytoskeletal protein peripherin, a type III intermediate filament (IF) subunit which is not expressed in hippocampal neurons and AtT20 cells. We show here that soluble factor(s) secreted specifically from skeletal muscle cells can induce the expression and de novo assembly of peripherin in a subset of post-mitotic neurons. We further demonstrate that one of these factors is the Leukemia Inhibitory Factor/Cholinergic Neuronal Differentiation Factor. The environmentally regulated expression of peripherin implies a remarkable degree of plasticity in the cytoskeletal organization of postmitotic CNS cells and provides a noninvasive model system to examine the de novo assembly of IF proteins under in vivo conditions.


Asunto(s)
Sustancias de Crecimiento/fisiología , Hipocampo/metabolismo , Interleucina-6 , Proteínas de Filamentos Intermediarios/biosíntesis , Glicoproteínas de Membrana , Músculos/fisiología , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Medios de Cultivo Condicionados , Epitelio/fisiología , Feto , Regulación de la Expresión Génica , Inhibidores de Crecimiento/fisiología , Sustancias de Crecimiento/aislamiento & purificación , Hipocampo/citología , Hipocampo/efectos de los fármacos , Factor Inhibidor de Leucemia , Linfocinas/fisiología , Mitosis/fisiología , Datos de Secuencia Molecular , Músculos/citología , Neuroglía/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Periferinas , Ratas , Ratas Sprague-Dawley
6.
J Cell Biol ; 130(6): 1447-59, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7559765

RESUMEN

Certain epithelial cells synthesize the polymeric immunoglobulin receptor (pIgR) to transport immunoglobulins (Igs) A and M into external secretions. In polarized epithelia, newly synthesized receptor is first delivered to the basolateral plasma membrane and is then, after binding the Ig, transcytosed to the apical plasma membrane, where the receptor-ligand complex is released by proteolytic cleavage. In a previous work (Ikonen et al., 1993), we implied the existence of a dendro-axonal transcytotic pathway for the rabbit pIgR expressed in hippocampal neurons via the Semliki Forest Virus (SFV) expression system. By labeling surface-exposed pIgR in live neuronal cells, we now show (a) internalization of the receptor from the dendritic plasma membrane to the dendritic early endosomes, (b) redistribution of the receptor from the dendritic to the axonal domain, (c) inhibition of this movement by brefeldin A (BFA) and (d) stimulation by the activation of protein kinase C (PKC) via phorbol myristate acetate (PMA). In addition, we show that a mutant form of the receptor lacking the epithelial basolateral sorting signal is directly delivered to the axonal domain of hippocampal neurons. Although this mutant is internalized into early endosomes, no transcytosis to the dendrites could be observed. In epithelial Madin-Darby Canine Kidney (MDCK) cells, the mutant receptor could also be internalized into basolaterally derived early endosomes. These results suggest the existence of a dendro-axonal transcytotic pathway in neuronal cells which shares similarities with the basolateral to apical transcytosis in epithelial cells and constitute the basis for the future analysis of its physiological role.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/biosíntesis , Animales , Secuencia de Bases , Transporte Biológico , Células Cultivadas , Perros , Datos de Secuencia Molecular , Mutación , Ratas , Receptores Inmunológicos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transducción de Señal
7.
Science ; 283(5409): 1931-4, 1999 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-10082468

RESUMEN

The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.


Asunto(s)
Actinas/fisiología , Axones/fisiología , Proteínas Bacterianas , Conos de Crecimiento/fisiología , Neuritas/fisiología , Actinas/metabolismo , Animales , Axones/ultraestructura , Toxinas Bacterianas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Polaridad Celular , Células Cultivadas , Citocalasina D/farmacología , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Hipocampo , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Neuritas/ultraestructura , Fenotipo , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , Ratas , Transducción de Señal , Tiazoles/farmacología , Tiazolidinas
8.
Neuron ; 19(6): 1175-86, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9427242

RESUMEN

Axon formation in multipolar neurons is believed to depend on the existence of precise sorting mechanisms for axonal membrane and membrane-associated proteins. Conclusive evidence in living neurons, however, is lacking. In the present study, we use light and video microscopy to address this issue directly. We show that axon formation is preceded by the appearance in one of the multiple neurites of (1) a larger growth cone, (2) a higher amount and greater transport of membrane organelles, (3) polarized delivery of TGN-derived vesicles, (4) a higher concentration of mitochondria and peroxisomes, (5) a higher concentration of a cytosolic protein, and (6) a higher concentration of ribosomes. These results provide evidence for the involvement of bulk cytoplasmic flow as an early determinant of neuronal morphological polarization. Molecular sorting events would later trigger the establishment of functional polarity.


Asunto(s)
Axones/fisiología , Polaridad Celular/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Animales , Axones/ultraestructura , Células Cultivadas , Embrión de Mamíferos , Aparato de Golgi/fisiología , Aparato de Golgi/ultraestructura , Hipocampo/citología , Microscopía por Video , Neuronas/citología , Orgánulos/fisiología , Orgánulos/ultraestructura , Ratas
9.
Neuron ; 13(1): 11-22, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8043272

RESUMEN

Rab5a is a small GTPase that regulates fusion of endocytic vesicles to early endosomes. We investigated whether Rab5a is involved in early endocytic traffic in both the axonal and the somatodendritic domains of polarized neurons. Using immunofluorescence, endogenous Rab5a was detected in axons and dendrites. Its localization in axons strongly overlapped that of the synaptic vesicle protein synaptophysin. Indeed, Rab5a co-immunoisolated with synaptophysin-containing vesicles, and antibodies against Rab5a labeled synaptic vesicle-like structures in nerve terminals. The functional association of Rab5a with dendritic and axonal early endosomes was assayed by electron microscopy after overexpression of wild-type and mutant Rab5a in cultured hippocampal neurons. This induced the formation of abnormal endosomes in both the somatodendritic and the axonal domains. These results show a role for Rab5a in axonal and dendritic endocytosis, and the presence of Rab5a on synaptic vesicles indicates that the axonal endosomes participate in the biogenesis of these vesicles.


Asunto(s)
Endocitosis , Proteínas de Unión al GTP/fisiología , Hipocampo/citología , Neuronas/fisiología , Animales , Axones/química , Axones/fisiología , Encéfalo/ultraestructura , Células Cultivadas , Dendritas/química , Dendritas/fisiología , Técnica del Anticuerpo Fluorescente , Proteínas de Unión al GTP/análisis , Microscopía Electrónica , Neuronas/ultraestructura , Ratas , Fracciones Subcelulares/química , Vesículas Sinápticas/química , Sinaptofisina/análisis , Sinaptosomas/química , Proteínas de Unión al GTP rab5
10.
Curr Biol ; 10(22): 1467-70, 2000 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-11102812

RESUMEN

Cutting the axon of a morphologically polarized neuron (stage 3) close to the cell body causes another neurite to grow as an axon [1-3]. Stage 3 neurons still lack molecular segregation of axonal and dendritic proteins, however. Axonal and dendritic compartments acquire their distinct composition at stage 4 (4-5days in culture), when proteins such as the microtubule-associated protein 2 (MAP-2) and the glutamate receptor subunit GluR1 localize to the dendrites and disappear from the axon [4,5]. We investigated whether cultured hippocampal neurons retained axon/dendrite plasticity after axons and dendrites have created their distinct cytoskeletal architecture and acquired their specific membrane composition. We found that axotomy of stage 4 neurons transformed a dendrite into an axon. Using axonal and dendritic markers, we tested whether cytoskeletal changes could cause similar transformations, and found that actin depolymerization induced multiple axons in unpolarized neurons. Moreover, depletion of actin filaments from both morphologically and molecularly polarized cells also resulted in the growth of multiple axons from pre-existing dendrites. These results imply that dendrites retain the potential to become axons even after molecular segregation has occurred and that the dendritic fate depends on the integrity of the actin cytoskeleton.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Hipocampo/citología , Neuronas/citología , Animales , Anticuerpos Monoclonales/metabolismo , Axones/metabolismo , Biomarcadores , Diferenciación Celular , Citocalasina D , Dendritas/metabolismo , Dimetilsulfóxido/farmacología , Proteína GAP-43/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología
11.
Curr Biol ; 3(10): 635-44, 1993 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15335854

RESUMEN

BACKGROUND: A wide variety of proteins are transported across epithelial cells by vesicular carriers. This process, transcytosis, is used to generate cell surface polarity and to transport macromolecules between the luminal and serosal sides of the epithelial layer. The polymeric immunoglobulin receptor is a well-characterized transcytotic molecule in epithelia. It binds to its ligand, polymeric immunoglobulin, at the basolateral surface, and the receptor-ligand complex is transcytosed to the apical surface, where the ligand is released. Our previous studies have shown that hippocampal neurons may employ mechanisms similar to those of epithelial cells to sort proteins to two plasma membrane domains. The machinery used for axonal delivery recognizes proteins that are targeted apically in epithelia, whereas basolaterally destined proteins are delivered to the dendrites. It has not been clear, however, whether transcytosis occurs in neurons. RESULTS: We report expression of the polymeric immunoglobulin receptor in cultured hippocampal neurons, using a Semliki Forest Virus expression system, and show by immunofluorescence microscopy that the newly synthesized receptor is targeted from the Golgi complex predominantly to the dendrites - only about 20% of the infected neurons display axonal immunofluorescence. Addition of ligand leads to significant redistribution of the receptor to the axons, shown by an approximately three-fold increase in axonal immunoreactivity with the anti-receptor antibodies. CONCLUSIONS: Our results suggest that a transcytotic route, analogous to that in epithelia, exists in neurons, where it transports proteins from the somatodendritic to the axonal domain. Cultured neurons expressing the polymeric immunoglobulin receptor offer an experimental system that should be useful for further characterization of this novel neuronal pathway at the molecular and functional level.

12.
Mol Cell Biol ; 15(2): 918-24, 1995 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-7823956

RESUMEN

One of the major activities of developing neurons is the transport of new membrane to the growing axon. Candidates for playing a key role in the regulation of this intense traffic are the small GTP-binding proteins of the rab family. We have used hippocampal neurons in culture and analyzed membrane traffic activity after suppressing the expression of the small GTP-binding protein rab8. Inhibition of protein expression was accomplished by using sequence-specific antisense oligonucleotides. While rab8 depletion resulted in the blockage of morphological maturation in 95% of the neurons, suppression of expression of another rab protein, rab3a, had no effect, and all neurons developed normal axons and dendrites. The impairment of neuronal maturation by rab8 antisense treatment was due to inhibition of membrane traffic. Thus, by using video-enhanced differential interference contrast microscopy, we observed in the rab8-depleted cells a dramatic reduction in the number of vesicles undergoing anterograde transport. Moreover, by incubating antisense-treated neurons with Bodipy-labeled ceramide, a fluorescent marker for newly formed exocytic vesicles, we observed fluorescence labeling restricted to the Golgi apparatus, whereas in control cells labeling was found also in the neurites. These results show the role of the small GTPase rab8 in membrane traffic during neuronal process outgrowth.


Asunto(s)
Axones/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Neuronas/metabolismo , Oligonucleótidos Antisentido/farmacología , Proteínas de Unión al GTP rab , Animales , Axones/efectos de los fármacos , Secuencia de Bases , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Hipocampo/metabolismo , Datos de Secuencia Molecular , Ratas , Tionucleótidos
13.
Mol Biol Cell ; 11(4): 1213-24, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10749925

RESUMEN

Neurons transport newly synthesized membrane proteins along axons by microtubule-mediated fast axonal transport. Membrane proteins destined for different axonal subdomains are thought to be transported in different transport carriers. To analyze this differential transport in living neurons, we tagged the amyloid precursor protein (APP) and synaptophysin (p38) with green fluorescent protein (GFP) variants. The resulting fusion proteins, APP-yellow fluorescent protein (YFP), p38-enhanced GFP, and p38-enhanced cyan fluorescent protein, were expressed in hippocampal neurons, and the cells were imaged by video microscopy. APP-YFP was transported in elongated tubules that moved extremely fast (on average 4.5 micrometer/s) and over long distances. In contrast, p38-enhanced GFP-transporting structures were more vesicular and moved four times slower (0.9 micrometer/s) and over shorter distances only. Two-color video microscopy showed that the two proteins were sorted to different carriers that moved with different characteristics along axons of doubly transfected neurons. Antisense treatment using oligonucleotides against the kinesin heavy chain slowed down the long, continuous movement of APP-YFP tubules and increased frequency of directional changes. These results demonstrate for the first time directly the sorting and transport of two axonal membrane proteins into different carriers. Moreover, the extremely fast-moving tubules represent a previously unidentified type of axonal carrier.


Asunto(s)
Transporte Axonal/fisiología , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Proteínas Bacterianas/genética , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes , Hipocampo/citología , Cinesinas/química , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Microscopía por Video , Microtúbulos/metabolismo , Neuronas/citología , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
14.
Mol Biol Cell ; 11(8): 2657-71, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10930461

RESUMEN

EEA1 is an early endosomal Rab5 effector protein that has been implicated in the docking of incoming endocytic vesicles before fusion with early endosomes. Because of the presence of complex endosomal pathways in polarized and nonpolarized cells, we have examined the distribution of EEA1 in diverse cell types. Ultrastructural analysis demonstrates that EEA1 is present on a subdomain of the early sorting endosome but not on clathrin-coated vesicles, consistent with a role in providing directionality to early endosomal fusion. Furthermore, EEA1 is associated with filamentous material that extends from the cytoplasmic surface of the endosomal domain, which is also consistent with a tethering/docking role for EEA1. In polarized cells (Madin-Darby canine kidney cells and hippocampal neurons), EEA1 is present on a subset of "basolateral-type" endosomal compartments, suggesting that EEA1 regulates specific endocytic pathways. In both epithelial cells and fibroblastic cells, EEA1 and a transfected apical endosomal marker, endotubin, label distinct endosomal populations. Hence, there are at least two distinct sets of early endosomes in polarized and nonpolarized mammalian cells. EEA1 could provide specificity and directionality to fusion events occurring in a subset of these endosomes in polarized and nonpolarized cells.


Asunto(s)
Endosomas/metabolismo , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Animales , Línea Celular , Polaridad Celular , Células Cultivadas , Dendritas/metabolismo , Perros , Endosomas/ultraestructura , Células Epiteliales/citología , Fibroblastos/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de la Membrana/ultraestructura , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Neuronas/citología , Ratas , Proteínas de Transporte Vesicular
15.
Mol Biol Cell ; 6(10): 1315-32, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8573789

RESUMEN

The boundaries of the organelles of the biosynthetic endomembrane system are still controversial. In this paper we take advantage of the unique architectural organization of neurons to investigate the localization of a spectrum of compartment-specific markers with the goal of defining the location of the rough endoplasmic reticulum (ER), smooth ER, intermediate compartment, and the Golgi complex. Markers of the rough ER (signal sequence receptor), Golgi complex (mannosidase II), and the trans Golgi network (TGN38) were essentially restricted to the cell body and the initial segment of one of the cell's dendrites. In contrast the cytochemical reaction product for glucose 6 phosphate, a classical ER marker, in addition to staining ER structures in the cell body also reacted with smooth ER elements that extended into both axons and dendrites. These peripheral smooth ER elements also reacted at the immunofluorescence level for ER marker 3-hydroxy-3-methylglutaryl-coenzyme A reductase, as well as for calnexin and protein disulfide isomerase. We also analyzed the location of rab1, rab2, p58, the KDEL receptor, and beta-subunit of coatomer. These intermediate compartment markers were found predominantly in the cell body but also extended to the proximal parts of the dendrites. Collectively, our data argue that the ER of hippocampal neurons consists of functionally and spatially distinct and separated domains, and they stress the power of the hippocampal neuron system for investigations of the organization of the ER by light microscopy.


Asunto(s)
Compartimento Celular , Retículo Endoplásmico Rugoso/química , Retículo Endoplásmico Liso/química , Aparato de Golgi/química , Proteínas de la Membrana/análisis , Neuronas/ultraestructura , Animales , Transporte Biológico , Biomarcadores/análisis , Células Cultivadas , Retículo Endoplásmico Rugoso/ultraestructura , Retículo Endoplásmico Liso/ultraestructura , Aparato de Golgi/ultraestructura , Hipocampo/química , Hipocampo/citología , Microscopía Fluorescente , Neuronas/química , Ratas , Virus de los Bosques Semliki , Proteínas Virales/análisis , Proteínas Virales/biosíntesis
16.
Mol Biol Cell ; 10(9): 2945-53, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10473638

RESUMEN

Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP-labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 microm/min with a maximum velocity of 24. 3 microm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.


Asunto(s)
Dendritas/metabolismo , Hipocampo/citología , Microtúbulos/metabolismo , Orgánulos/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Proteínas del Citoesqueleto , Dendritas/efectos de los fármacos , Proteínas Fluorescentes Verdes , Hipocampo/embriología , Humanos , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Microscopía por Video , Microtúbulos/efectos de los fármacos , Movimiento/efectos de los fármacos , Nocodazol/farmacología , Distribución Normal , Orgánulos/efectos de los fármacos , Orgánulos/genética , Proteínas de Unión al ARN/genética , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
17.
Curr Opin Neurobiol ; 1(3): 388-92, 1991 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-1821682

RESUMEN

Because neurons are highly polarized and capable of various modes of neurosecretion the exocytotic and endocytotic membrane traffic in these cells is more complex than in other eukaryotic cells. Progress in our understanding of neuronal membrane traffic and organelle biogenesis has come from recently discovered analogies to epithelial and endocrine cells.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Exocitosis/fisiología , Neuronas/metabolismo , Animales , Membrana Celular/ultraestructura , Humanos , Neuronas/ultraestructura
18.
Curr Opin Neurobiol ; 10(5): 574-81, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11084319

RESUMEN

In recent years we have learned a great deal about the molecular mechanisms underlying axonal elongation and navigation and the manner in which extracellular signals modify a growth cone's course of action. Yet, the mechanisms responsible for the earlier events of axonal and dendritic generation are just beginning to be understood. The recent advances in this exciting field highlight the importance of studies of cell migration and axonal elongation for our current understanding of the establishment of neuronal polarity.


Asunto(s)
Polaridad Celular/fisiología , Hipocampo/citología , Neuronas/fisiología , Animales , Membrana Celular/fisiología , Células Cultivadas , Humanos
19.
J Neurosci ; 20(11): RC78, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10807936

RESUMEN

Studies on dendritic sorting of transmembrane proteins in hippocampal neurons in culture have shown that these cells use similar mechanisms as epithelial cells to sort transmembrane proteins to the basolateral membrane domain. However, information is still scarce with regard to which amino acidic sequences are required for dendritic sorting in neurons. The glutamate receptor 1 (GluR1) subunit of the AMPA receptor is present on the dendritic compartment of hippocampal neurons in culture. To identify the GluR1 sorting signal responsible for dendritic targeting, we have expressed the wild-type GluR1, a deletion mutant in the C-terminal cytoplasmic tail, and chimeric GluR1 proteins in hippocampal neurons using a calcium phosphate transfection method. The recombinant full-length GluR1 is polarized to the dendritic domain. Truncated GluR1 with a deletion of the C-terminal cytoplasmic tail is still delivered to the somatodendritic domain. However a chimeric protein made of the luminal and transmembrane domain of the influenza virus hemagglutinin (HA) fused to the GluR1 C-terminal cytoplasmic tail (HaemR1) is detected in the somatodendritic domain. This finding indicates that the GluR1 C-terminal cytoplasmic tail contains a dendritic sorting signal, which redirects the axonal or axonal-dendritic protein HA to the dendritic compartment exclusively. Deletion analysis of HaemR1 shows that the proximal segment of the GluR1 C-terminal cytoplasmic tail contains a novel dendritic sorting signal.


Asunto(s)
Dendritas/metabolismo , Hipocampo/metabolismo , Receptores AMPA/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Inmunohistoquímica , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas , Receptores AMPA/genética , Eliminación de Secuencia , Transfección
20.
J Neurosci ; 20(10): RC76, 2000 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-10783400

RESUMEN

The presence of specific mRNAs in dendrites and at synapses is well established, but a direct and reliable demonstration that they are associated with polysomes is still missing. To address this point we analyzed the polysomal association of the mRNAs for the alpha-subunit of Ca(2+)/calmodulin-dependent protein kinase II (alpha-CaMKII), for type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) and for the activity-regulated cytoskeleton-associated protein (Arc) in a synaptosomal preparation devoid of contaminating material from neuronal and glial perikarya. We show that a fraction of alpha-CaMKII, InsP3R1, and Arc mRNAs present in synaptosomes is indeed associated with polysomes. Moreover, we show that polysomal association of alpha-CaMKII mRNA, but not InsP3R1 and Arc mRNAs, increases with depolarization of the synaptosomal membrane. Finally, we show that the synthesis of alpha-CaMKII protein increases with stimulation. Dendritic mRNA recruitment onto polysomes in response to synaptic stimulation might represent one of the mechanisms underlying the processes of learning and memory.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Sinaptosomas/metabolismo , Animales , Encéfalo/ultraestructura , Canales de Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas del Citoesqueleto/metabolismo , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Polirribosomas/enzimología , Cloruro de Potasio/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Estimulación Química , Sinaptosomas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA