RESUMEN
A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination.
Asunto(s)
Envejecimiento/metabolismo , Núcleo Celular/enzimología , Citoplasma/enzimología , Hipocampo/enzimología , Neuronas/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Transporte Activo de Núcleo Celular , Envejecimiento/genética , Envejecimiento/patología , Animales , Conducta Animal , Núcleo Celular/ultraestructura , Supervivencia Celular , Cromatina/enzimología , Cognición , Células HEK293 , Hipocampo/ultraestructura , Humanos , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Neuronas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Ratas Wistar , Transducción de Señal , Estrés Fisiológico , Transcripción Genética , Transfección , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication. However, neurons live for the entire lifespan of the individual. One of the reasons why neurons remain functional in elderly people is survival mechanisms prevail over death mechanisms. While many signals are either pro-survival or pro-death, others can play both roles. Extracellular vesicles (EVs) can signal both pro-toxicity and survival. We used young and old animals, primary neuronal and oligodendrocyte cultures and neuroblastoma and oligodendrocytic lines. We analysed our samples using a combination of proteomics and artificial neural networks, biochemistry and immunofluorescence approaches. We found an age-dependent increase in ceramide synthase 2 (CerS2) in cortical EVs, expressed by oligodendrocytes. In addition, we show that CerS2 is present in neurons via the uptake of oligodendrocyte-derived EVs. Finally, we show that age-associated inflammation and metabolic stress favour CerS2 expression and that oligodendrocyte-derived EVs loaded with CerS2 lead to the expression of the antiapoptotic factor Bcl2 in inflammatory conditions. Our study shows that intercellular communication is altered in the ageing brain, which favours neuronal survival through the transfer of oligodendrocyte-derived EVs containing CerS2.
Asunto(s)
Vesículas Extracelulares , Neuronas , Animales , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismoRESUMEN
Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood. In this work, we studied the biological effects of small EVs (sEVs) isolated from neural cells maintained for 14 or 21 days in vitro (DIV). We found that EVs isolated from 14 DIV cultures reduced the extracellular levels of lactate dehydrogenase (LDH), the expression levels of the astrocytic protein GFAP, and the complexity of astrocyte architecture suggesting a role in lowering the reactivity of astrocytes, while EVs produced by 21 DIV cells did not show any of the above effects. These results in an in vitro model pave the way to evaluate whether similar results occur in vivo and through what mechanisms.
Asunto(s)
Astrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Factores de Edad , Envejecimiento , Animales , Astrocitos/fisiología , Encéfalo/metabolismo , Sistema Nervioso Central/fisiología , Vesículas Extracelulares/fisiología , Proteína Ácida Fibrilar de la Glía/análisis , Proteína Ácida Fibrilar de la Glía/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , L-Lactato Deshidrogenasa/análisis , Microglía/metabolismo , Neuronas/fisiología , Cultivo Primario de Células , Ratas , Ratas Wistar , Factores de TiempoRESUMEN
The centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center, raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here, we report, using super-resolution microscopy and live-cell imaging of cultured rodent neurons, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively. Photoactivation/photoconversion experiments and molecular manipulations of F-actin stability reveal a robust flux of somatic F-actin toward the cell periphery. Finally, we show that somatic F-actin intermingles with centrosomal PCM-1 (pericentriolar material 1 protein) satellites. Knockdown of PCM-1 and disruption of centrosomal activity not only affect F-actin dynamics near the centrosome but also in distal growth cones. Collectively, the data show a radial F-actin organization during early neuronal development, which might be a cellular mechanism for providing peripheral regions with a fast and continuous source of actin polymers, hence sustaining initial neuronal development.
Asunto(s)
Actinas/metabolismo , Conos de Crecimiento/metabolismo , Neurogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centrosoma/metabolismo , Hipocampo/citología , Hipocampo/embriología , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , RatasRESUMEN
Type 2 diabetes (T2DM) and obesity might increase the risk for AD by 2-fold. Different attempts to model the effect of diet-induced diabetes on AD pathology in transgenic animal models, resulted in opposite conclusions. Here, we used a novel knock-in mouse model for AD, which, differently from other models, does not overexpress any proteins. Long-term high fat diet treatment triggers a reduction in hippocampal N-acetyl-aspartate/myo-inositol metabolites ratio and impairs long term potentiation in hippocampal acute slices. Interestingly, these alterations do not correlate with changes in the core neuropathological features of AD, i.e. amyloidosis and Tau hyperphosphorylation. The data suggest that AD phenotypes associated with high fat diet treatment seen in other models for AD might be exacerbated because of the overexpressing systems used to study the effects of familial AD mutations. Our work supports the increasing insight that knock-in mice might be more relevant models to study the link between metabolic disorders and AD.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Enfermedad de Alzheimer/patología , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/tendencias , Hipocampo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de ÓrganosRESUMEN
BACKGROUND AND PURPOSE: 3ß-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice. METHODS: Dhcr24(+/-) and wild-type (WT) mice were subjected to permanent middle cerebral artery occlusion. In another set of experiments, WT mice were treated intraperitoneally either with vehicle or U18666A (seladin-1/DHCR24 inhibitor, 10 mg/kg) 30 minutes after middle cerebral artery occlusion. Brains were removed 48 h after middle cerebral artery occlusion for infarct volume determination. For protein expression determination, peri-infarct region was obtained 24 h after ischemia, and Western blot or cytometric bead array was performed. RESULTS: Dhcr24(+/-) mice displayed larger infarct volumes after middle cerebral artery occlusion than their WT littermates. Treatment of WT mice with the seladin-1/DHCR24 inhibitor U18666A also increased ischemic lesion. Inflammation-related mediators were increased after ischemia in Dhcr24(+/-) mice compared with WT counterparts. Consistent with a role of cholesterol in proper function of glutamate transporter EAAT2 in membrane lipid rafts, we found a decreased association of EAAT2 with lipid rafts after ischemia when DHCR24 is genetically deleted or pharmacologically inhibited. Accordingly, treatment with U18666A decreases [(3)H]-glutamate uptake in cultured astrocytes. CONCLUSIONS: These results support the idea that lipid raft integrity, ensured by seladin-1/DHCR24, plays a crucial protective role in the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess.
Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Microdominios de Membrana/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/deficiencia , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/prevención & control , Androstenos/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Masculino , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Accidente Cerebrovascular/genéticaRESUMEN
The precise polarization and orientation of developing neurons is essential for the correct wiring of the brain. In pyramidal excitatory neurons, polarization begins with the sprouting of opposite neurites, which later define directed migration and axo-dendritic domains. We here show that endogenous N-cadherin concentrates at one pole of the newborn neuron, from where the first neurite subsequently emerges. Ectopic N-cadherin is sufficient to favour the place of appearance of the first neurite. The Golgi and centrosome move towards this newly formed morphological pole in a second step, which is regulated by PI3K and the actin/microtubule cytoskeleton. Moreover, loss of function experiments in vivo showed that developing neurons with a non-functional N-cadherin misorient their cell axis. These results show that polarization of N-cadherin in the immediate post-mitotic stage is an early and crucial mechanism in neuronal polarity.
Asunto(s)
Cadherinas/metabolismo , División Celular , Polaridad Celular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Neuritas/fisiología , Fosfatidilinositol 3-Quinasa/metabolismo , RatasRESUMEN
The deregulation of brain cholesterol metabolism is typical in acute neuronal injury (such as stroke, brain trauma and epileptic seizures) and chronic neurodegenerative diseases (Alzheimer's disease). Since both conditions are characterized by excessive stimulation of glutamate receptors, we have here investigated to which extent excitatory neurotransmission plays a role in brain cholesterol homeostasis. We show that a short (30 min) stimulation of glutamatergic neurotransmission induces a small but significant loss of membrane cholesterol, which is paralleled by release to the extracellular milieu of the metabolite 24S-hydroxycholesterol. Consistent with a cause-effect relationship, knockdown of the enzyme cholesterol 24-hydroxylase (CYP46A1) prevented glutamate-mediated cholesterol loss. Functionally, the loss of cholesterol modulates the magnitude of the depolarization-evoked calcium response. Mechanistically, glutamate-induced cholesterol loss requires high levels of intracellular Ca(2+), a functional stromal interaction molecule 2 (STIM2) and mobilization of CYP46A1 towards the plasma membrane. This study underscores the key role of excitatory neurotransmission in the control of membrane lipid composition, and consequently in neuronal membrane organization and function.
Asunto(s)
Colesterol/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colesterol 24-Hidroxilasa , Técnicas de Silenciamiento del Gen , Ácido Glutámico/farmacología , Hipocampo/efectos de los fármacos , Hidroxicolesteroles/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Molécula de Interacción Estromal 2RESUMEN
Final morphological polarization of neurons, with the development of a distinct axon and several dendrites, is preceded by phases where they have a non-polarized architecture. The earliest of these phases is that of the round neuron arising from the last mitosis. A second non-polarized stage corresponds to the bipolar neuron, with two morphologically identical neurites. Both phases have their distinctive relevance in the establishment of neuronal polarity. During the round cell stage, a decision is made as to where from the cell periphery a first neurite will form, thus creating the first sign of asymmetry. At the bipolar stage a decision is made as to which of the two neurites becomes the axon in neurons polarizing in vitro, and the leading edge in neurons in situ. In this study, we analysed cytoskeletal and membrane dynamics in cells at these two 'pre-polarity' stages. By means of time lapse imaging in dissociated hippocampal neurons and ex vivo cortical slices, we show that both stages are characterized by polarized intracellular arrangements. However, the stages have distinct temporal hierarchies: polarized actin dynamics marks the site of first polarization in round cells, whereas polarized membrane dynamics precedes asymmetric growth in the bipolar stage.
Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Citoesqueleto/metabolismo , Hipocampo/crecimiento & desarrollo , Neurogénesis , Neuronas/fisiología , Animales , Células Cultivadas , Femenino , Hipocampo/citología , Ratones , Técnicas de Cultivo de Órganos , Embarazo , Transporte de Proteínas , Ratas , Ratas Endogámicas , Imagen de Lapso de TiempoRESUMEN
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Colesterol/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Hormonas Esteroides Gonadales/química , Hormonas Esteroides Gonadales/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Metabolismo de los Lípidos , Mutación , Neuronas/metabolismo , Neuronas/fisiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patologíaRESUMEN
PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.
Asunto(s)
Axones/fisiología , Gangliósidos/metabolismo , Regeneración Nerviosa/fisiología , Neuraminidasa/metabolismo , Neuronas Retinianas/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axotomía , Activación Enzimática/fisiología , Inmunohistoquímica , Masculino , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , TransfecciónRESUMEN
Niemann-Pick disease type A (NPDA) is a fatal disease due to mutations in the acid sphingomyelinase (ASM) gene, which triggers the abnormal accumulation of sphingomyelin (SM) in lysosomes and the plasma membrane of mutant cells. Although the disease affects multiple organs, the impact on the brain is the most invalidating feature. The mechanisms responsible for the cognitive deficit characteristic of this condition are only partially understood. Using mice lacking the ASM gene (ASMko), a model system in NPDA research, we report here that high sphingomyelin levels in mutant neurons lead to low synaptic levels of phosphoinositide PI(4,5)P2 and reduced activity of its hydrolyzing phosphatase PLCγ, which are key players in synaptic plasticity events. In addition, mutant neurons have reduced levels of membrane-bound MARCKS, a protein required for PI(4,5)P2 membrane clustering and hydrolysis. Intracerebroventricular infusion of a peptide that mimics the effector domain of MARCKS increases the content of PI(4,5)P2 in the synaptic membrane and ameliorates behavioral abnormalities in ASMko mice.
Asunto(s)
Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Proteínas de la Membrana/uso terapéutico , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/etiología , Enfermedad de Niemann-Pick Tipo A/complicaciones , Enfermedad de Niemann-Pick Tipo A/tratamiento farmacológico , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Inyecciones Intraventriculares , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Mutación/genética , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Enfermedad de Niemann-Pick Tipo A/metabolismo , Enfermedad de Niemann-Pick Tipo A/patología , Fosfolipasa C gamma/metabolismo , Esfingomielina Fosfodiesterasa/genética , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismoRESUMEN
Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.
Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ciclo Celular , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular , Células Cultivadas , Electroporación , Femenino , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , EmbarazoRESUMEN
Analyzing changes in gene expression within specific brain regions of individuals with Type 2 Diabetes (T2DM) who do not exhibit significant cognitive deficits can yield valuable insights into the mechanisms underlying the progression towards a more severe phenotype. In this study, transcriptomic analysis of the cortex and hippocampus of mice with long-term T2DM revealed alterations in the expression of 28 genes in the cerebral cortex and 15 genes in the hippocampus. Among these genes, six displayed consistent changes in both the cortex and hippocampus: Interferon regulatory factor 7 (Irf7), Hypoxia-inducible factor 3 alpha (Hif-3α), period circadian clock 2 (Per2), xanthine dehydrogenase (Xdh), and Transforming growth factor ß-stimulated clone 22/TSC22 (Tsc22d3) were upregulated, while Claudin-5 (Cldn5) was downregulated. Confirmation of these changes was achieved through RT-qPCR. At the protein level, CLDN5 and IRF7 exhibited similar alterations, with CLDN5 being downregulated and IRF7 being upregulated. In addition, the hippocampus and cortex of the T2DM mice showed decreased levels of IκBα, implying the involvement of NF-κB pathways as well. Taken together, these results suggest that the weakening of the blood-brain barrier and an abnormal inflammatory response via the Interferon 1 and NF-κB pathways underlie cognitive impairment in individuals with long-standing T2DM.
Asunto(s)
Corteza Cerebral , Claudina-5 , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipocampo , Factor 7 Regulador del Interferón , Animales , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Claudina-5/metabolismo , Claudina-5/genética , Ratones , Diabetes Mellitus Experimental/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Ratones Endogámicos C57BLRESUMEN
Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related. Here we demonstrate that down-regulation of Abca2 in mammalian cells leads to decreased amyloid-ß (Aß) generation. In vitro studies revealed altered γ-secretase complex formation in Abca2 knock-out cells due to the altered levels, post-translational modification, and subcellular localization of Nicastrin. Reduced Abca2 levels in mammalian cells in vitro, in Drosophila melanogaster and in mice resulted in altered γ-secretase processing of APP, and thus Aß generation, without affecting Notch cleavage.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , RatasRESUMEN
A developmentally regulated loss of membrane cholesterol was reported to be sufficient and necessary for activation of neurotrophic tyrosine kinase receptor type 2 (TrkB) in aged neurons in vitro. However, TrkB activity in low cholesterol neurons remains confined to detergent-resistant membrane fractions, indicating that additional lipidic changes occur with age. Analysis of neuronal lipids at different developmental stages revealed a sharp increase in sphingomyelin (SM) during neuronal maturation. Reduction of SM abrogated TrkB activation in mature neurons, whereas increasing SM in immature neurons triggered receptor activation. TrkB activity in high SM background was the consequence of enhanced phosphorylation in the detergent-resistant fractions and increased Rac1-mediated endocytosis. The current results reveal developmental upregulation of SM as an important mechanism for sustaining TrkB activity in the mature nervous system, in addition to the presence of brain-derived neurotrophic factor (BDNF).
Asunto(s)
Endocitosis , Neuronas/metabolismo , Receptor trkB/metabolismo , Esfingomielinas/metabolismo , Regulación hacia Arriba , Proteína de Unión al GTP rac1/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor trkB/genética , Proteína de Unión al GTP rac1/genéticaRESUMEN
BACKGROUND INFORMATION: PIX proteins are exchange factors for Rac and Cdc42 GTPases that are differentially expressed in the brain, where they are implicated in neuronal morphogenesis. The PIX family includes the two members αPIX and ßPIX, and the gene of αPIX is mutated in patients with intellectual disability. RESULTS: We have analysed the expression of PIX proteins in the developing brain and addressed their role during early hippocampal neuron development. Mass spectrometry identified several ßPIX isoforms and a major p75 αPIX isoform in brain and hippocampal cultures. PIX proteins expression increased with time during neuronal differentiation in vitro. The PIX partners GIT1 and GIT2 are also found in brain and their expression was increased during neuronal differentiation. We found that αPIX, but not ßPIX, was required for proper hippocampal neuron differentiation, since silencing of αPIX specifically hampered dendritogenesis and axonal branching. Interestingly, the depletion of GIT2 but not GIT1 mimicked the phenotype observed after αPIX knock-down. Over-expression of αPIX specifically enhanced dendritic branching, while both αPIX and ßPIX over-expression affected axonal morphology. Again, only over-expression of GIT2, but not GIT1, affected neuritic morphology. CONCLUSIONS: The results indicate that αPIX and GIT2 are required for neuronal differentiation, and suggest that they are part of the same pathway, while GIT1 and ßPIX are dispensable for early hippocampal neurons development.
Asunto(s)
Axones/metabolismo , Dendritas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Hipocampo/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Ratas , Factores de Intercambio de Guanina Nucleótido RhoRESUMEN
In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice. Mechanistically, the deficits are not paralleled by higher levels of toxic forms of Aß or by neuroinflammation but by a reduction in γ-secretase activity, lower levels of synaptic proteins, and by increased phosphorylation of tau. RNA-seq analysis of the cerebral cortex of hAPP NL/F and wild-type mice suggests that the former could be more susceptible to T2DM because of defects in trans-membrane transport. The results of this work, on the one hand, confirm the importance of the genetic background in the severity of the cognitive disorders in individuals with T2DM and, on the other hand, suggest, among the involved mechanisms, the inhibition of γ-secretase activity.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ratones Transgénicos , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Susceptibilidad a EnfermedadesRESUMEN
Endosomes and endosomal vesicles (EVs) rapidly move along cytoskeletal filaments allowing them to exchange proteins and lipids between different endosomal compartments, lysosomes, the trans-Golgi network (TGN), and the plasma membrane. The precise mechanisms that connect membrane traffic between the TGN and perinuclear endosomal compartments with motor-protein driven transport have largely remained elusive. Here we show that Gadkin (also termed gamma-BAR), a peripheral membrane protein localized to the TGN and to TGN-derived EVs, directly associates with the clathrin adaptor AP-1 and with the motor protein kinesin KIF5, thereby potentially regulating EV dynamics. Gadkin overexpression induced the dispersion of transferrin (Tf)- and Rab4-positive EVs to the cell periphery, whereas KIF5B-depleted cells displayed a perinuclear concentration. Functional experiments suggest that the role of Gadkin as a regulator of endosomal membrane traffic critically depends on complex formation with both AP-1 and KIF5. Our data thus provide a direct molecular link between TGN-derived EVs and the microtubule-based cytoskeleton.