Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 12(3): 389-396, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33738066

RESUMEN

Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as an attractive target for cancer immunotherapy. An automated ligand identification system screen afforded the tetrahydroquinoline class of novel IDO1 inhibitors. Potency and pharmacokinetic (PK) were key issues with this class of compounds. Structure-based drug design and strategic incorporation of polarity enabled the rapid improvement on potency, solubility, and oxidative metabolic stability. Metabolite identification studies revealed that amide hydrolysis in the D-pocket was the key clearance mechanism for this class. Strategic survey of amide isosteres revealed that carbamates and N-pyrimidines, which maintained exquisite potencies, mitigated the amide hydrolysis issue and led to an improved rat PK profile. The lead compound 28 is a potent IDO1 inhibitor, with clean off-target profiles and the potential for quaque die dosing in humans.

2.
ACS Med Chem Lett ; 11(8): 1548-1554, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832022

RESUMEN

Indoleamine-2,3-dioxygenase 1 (IDO1) inhibition and its combination with immune checkpoint inhibitors like pembrolizumab have drawn considerable attention from both academia and the pharmaceutical industry. Here, we describe the discovery of a novel class of highly potent IDO1 heme-displacing inhibitors featuring a unique bicyclo[1.1.1]pentane motif. Compound 1, evolving from an ALIS (automated ligand identification system) hit, exhibited excellent potency but lacked the desired pharmacokinetic profile due to extensive amide hydrolysis of the benzamide moiety. Replacing the central phenyl ring in 1 with a bicyclo[1.1.1]pentane bioisostere effectively circumvented the amide hydrolysis issue, resulting in the discovery of compound 2 with a favorable overall profile such as excellent potency, selectivity, pharmacokinetics, and a low predicted human dose.

3.
ACS Med Chem Lett ; 10(11): 1530-1536, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31749906

RESUMEN

Checkpoint inhibitors have demonstrated unprecedented efficacy and are evolving to become standard of care for certain types of cancers. However, low overall response rates often hamper the broad utility and potential of these breakthrough therapies. Combination therapy strategies are currently under intensive investigation in the clinic, including the combination of PD-1/PD-L1 agents with IDO1 inhibitors. Here, we report the discovery of a class of IDO1 heme-binding inhibitors featuring a unique amino-cyclobutarene motif, which was discovered through SBDD from a known and weakly active inhibitor. Subsequent optimization efforts focused on improving metabolic stability and were greatly accelerated by utilizing a robust SNAr reaction of a facile nitro-furazan intermediate to quickly explore different polar side chains. As a culmination of these efforts, compound 16 was identified and demonstrated a favorable overall profile with superior potency and selectivity. Extensive studies confirmed the chemical stability and drug-like properties of compound 16, rendering it a potential drug candidate.

4.
J Control Release ; 256: 19-25, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28342981

RESUMEN

Little is known about the underlying effects controlling in vitro-in vivo correlations (IVIVCs) for biodegradable controlled release microspheres. Most reports of IVIVCs that exist are empirical in nature, typically based on a mathematical relationship between in vitro and in vivo drug release, with the latter often estimated by deconvolution of pharmacokinetic data. In order to improve the ability of in vitro release tests to predict microsphere behavior in vivo and develop more meaningful IVIVCs, the in vivo release mechanisms need to be characterized. Here, two poly(lactic-co-glycolic acid) (PLGA) microsphere formulations encapsulating the model steroid triamcinolone acetonide (Tr-A) were implanted subcutaneously in rats by using a validated cage model, allowing for free fluid and cellular exchange and microsphere retrieval during release. Release kinetics, as well as mechanistic indicators of release such as hydrolysis and mass loss, was measured by direct analysis of the recovered microspheres. Release of Tr-A from both formulations was greatly accelerated in vivo compared to in vitro using agitated phosphate buffered saline +0.02% Tween 80 pH7.4, including rate of PLGA hydrolysis, mass loss and water uptake. Both microsphere formulations exhibited erosion-controlled release in vitro, indicated by similar polymer mass loss kinetics, but only one of the formulations (low molecular weight, free acid terminated) exhibited the same mechanism in vivo. The in vivo release of Tr-A from microspheres made of a higher molecular weight, ester end-capped PLGA displayed an osmotically induced/pore diffusion mechanism based on confocal micrographs of percolating pores in the polymer, not previously observed in vitro. This research indicates the need to fully understand the in vivo environment and how it causes drug release from biodegradable microspheres. This understanding can then be applied to develop in vitro release tests which better mimic this environment and cause drug release by the relevant mechanistic processes, ultimately leading to the development of mechanism based IVIVCs.


Asunto(s)
Ácido Láctico , Microesferas , Ácido Poliglicólico , Triamcinolona Acetonida , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Liberación de Fármacos , Glucocorticoides/administración & dosificación , Glucocorticoides/química , Glucocorticoides/farmacocinética , Ácido Láctico/administración & dosificación , Ácido Láctico/química , Ácido Láctico/farmacocinética , Masculino , Ácido Poliglicólico/administración & dosificación , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Triamcinolona Acetonida/administración & dosificación , Triamcinolona Acetonida/química , Triamcinolona Acetonida/farmacocinética
5.
Eur J Pharm Biopharm ; 113: 24-33, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27865933

RESUMEN

In vitro tests for controlled release PLGA microspheres in their current state often do not accurately predict in vivo performance of these products during formulation development. Here, we introduce a new mechanistic and multi-phase approach to more clearly understand in vitro-in vivo relationships, and describe the first "in vitro phase" with the model drug, triamcinolone acetonide (Tr-A). Two microsphere formulations encapsulating Tr-A were prepared from PLGAs of different molecular weights and end-capping (18kDa acid-capped and 54kDa ester-capped). In vitro release kinetics and the evidence for controlling mechanisms (i.e., erosion, diffusion, and water-mediated processes) were studied in four release media: PBST pH 7.4 (standard condition), PBST pH 6.5, PBS+1.0% triethyl citrate (TC), and HBST pH 7.4. The release mechanism in PBST was primarily polymer erosion-controlled as indicated by the similarity of release and mass loss kinetics. Release from the low MW PLGA was accelerated at low pH due to increased rate of hydrolysis and in the presence of the plasticizer TC due to slightly increased hydrolysis and much higher diffusion in the polymer matrix. TC also increased release from the high MW PLGA due to increased hydrolysis, erosion, and diffusion. This work demonstrates how in vitro conditions can be manipulated to change not only rates of drug release from PLGA microspheres but also the mechanism(s) by which release occurs. Follow-on studies in the next phases of this approach will utilize these results to compare the mechanistic data of the Tr-A/PLGA microsphere formulations developed here after recovery of microspheres in vivo. This new approach based on measuring mechanistic indicators of release in vitro and in vivo has the potential to design better, more predictive in vitro release tests for these formulations and potentially lead to mechanism-based in vitro-in vivo correlations.


Asunto(s)
Portadores de Fármacos , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Triamcinolona Acetonida/administración & dosificación , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Microscopía Electrónica de Rastreo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Triamcinolona Acetonida/farmacocinética
6.
J Control Release ; 244(Pt B): 302-313, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27565212

RESUMEN

Release testing of parental controlled release microspheres is an essential step in controlling quality and predicting the duration of efficacy. In the first of a two-part study, we examined the effect of various incubation media on release from leuprolide-loaded PLGA microspheres to understand the influence of external pH, plasticization, and buffer type on mechanism of accelerated release. PLGA 50/50 microspheres encapsulating ~5% w/w leuprolide were prepared by the double emulsion-solvent evaporation method with or without gelatin or by the self-healing encapsulation method. The microspheres were incubated at 37°C up to 56days in various media: pH5.5, 6.5, and 7.4 phosphate buffered-saline (PBS) containing 0.02% Tween 80; pH7.4 PBS containing 1.0% triethyl citrate (PBStc); and pH7.4 HEPES buffered-saline containing 0.02% Tween 80 (all media contained 0.02% sodium azide). The recovered release media and microspheres were examined for released drug, polymer molecular weight (Mw), water uptake, mass loss, and BODIPY (green-fluorescent dye) diffusion coefficient in PLGA. After the initial burst release, release of leuprolide from acid-capped PLGA microspheres appeared to be controlled initially by erosion and then by a second mechanism after day 21, which likely consists of a combination of peptide desorption and/or water-mediated breakage of pore connections. PBStc and acidic buffers accelerated degradation of PLGA and pore-network development and increased BODIPY diffusion coefficient, resulting in faster release. Release of leuprolide from the end-capped PLGA showed similar trends as found with acid capped PLGA but with a longer lag time before release. These data provide a baseline mechanistic signature of in vitro release of leuprolide for future comparison with corresponding in vivo performance, and in turn could lead to future development of rational in vitro-in vivo correlations.


Asunto(s)
Ácido Láctico/química , Leuprolida/química , Microesferas , Ácido Poliglicólico/química , Compuestos de Boro/química , Liberación de Fármacos , Peso Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Temperatura de Transición
7.
Biomaterials ; 109: 88-96, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693924

RESUMEN

Here we describe development of a silicone rubber/stainless steel mesh cage implant system, much like that used to assess biocompatibility of biomaterials [1], for easy removal of injectable polymer microspheres in vivo. The sterile cage has a type 316 stainless steel mesh size (38 µm) large enough for cell penetration and free fluid flow in vivo but small enough for microsphere retention, and a silicone rubber shell for injection of the microspheres. Two model drugs, the poorly soluble steroid, triamcinolone acetonide, and the highly water-soluble luteinizing hormone-releasing hormone (LHRH) peptide superagonist, leuprolide, were encapsulated in PLGA microspheres large enough (63-90 µm) to be restrained by the cage implant in vivo. The in vitro release from both formulations was followed by ultra-performance liquid chromatography (UPLC) with and without the cage in a standard release media, PBS pH 7.4 + 0.02% Tween 80 + 0.05% sodium azide, at 37 °C. Pharmacokinetics (PK) in rats was assessed after SC injection or SC in-cage implantation of microspheres with plasma analysis by LC-MS/MS or EIA. Tr-A and leuprolide in vitro release was largely unaffected after the initial burst irrespective of the cage or test tube incubation vessel and release was much slower than observed in vivo for both drugs. Moreover, Tr-A and leuprolide pharmacokinetics with and without the cage were highly similar during the 2-3 week release duration before a significant inflammatory response was caused by the cage implant. Hence, the PK-validated cage implant provides a simple means to recover and evaluate the microsphere drug carriers in vivo during a time window of at least a few weeks in order to characterize the polymer microsphere release and erosion behavior in vivo. This approach may facilitate development of mechanism-based in vitro/in vivo correlations and enable development of more accurate and useful in vitro release tests.


Asunto(s)
Ácido Láctico/química , Ácido Poliglicólico/química , Acero Inoxidable/química , Animales , Materiales Biocompatibles/química , Química Farmacéutica , Preparaciones de Acción Retardada , Portadores de Fármacos , Liberación de Fármacos , Hormona Liberadora de Gonadotropina/agonistas , Hormona Liberadora de Gonadotropina/química , Humanos , Inyecciones Subcutáneas , Cinética , Leuprolida/química , Leuprolida/farmacocinética , Masculino , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Silicio , Solubilidad , Triamcinolona Acetonida/química , Triamcinolona Acetonida/farmacocinética , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA