Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(3): 036003, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094159

RESUMEN

This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films. The system manifests isotropic SMT features under both in-plane and perpendicular magnetic fields. Importantly, after scaling analysis of the isothermal magnetoresistance curves, the obtained effective dynamic critical exponents demonstrate divergent behavior when approaching the zero-temperature critical point B_{c}^{*}, identifying the QGS characteristics. Moreover, the quantum fluctuation associated with the QGS can quantitatively explain the upturn of the upper critical field around zero temperature for both the in-plane and perpendicular magnetic fields in the phase boundary of SMT. These properties indicate that the QGS in the Nd_{0.8}Sr_{0.2}NiO_{2} superconducting thin film is isotropic. Moreover, a higher magnetic field gives rise to a metallic state with the resistance-temperature relation R(T) exhibiting lnT dependence among the 2-10 K range and T^{2} dependence of resistance below 1.5 K, which is significant evidence of Kondo scattering. The interplay between isotropic QGS and Kondo scattering in the unconventional Nd_{0.8}Sr_{0.2}NiO_{2} superconductor can illustrate the important role of rare region in QGS and help to uncover the exotic superconductivity mechanism in this system.

2.
Adv Mater ; : e2408227, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072861

RESUMEN

Moiré superlattices, composed of two layers of transition metal dichalcogenides with a relative twist angle, provide a novel platform for exploring the correlated electronic phases and excitonic physics. Here, a gas-flow perturbation chemical vapor deposition (CVD) approach is demonstrated to directly grow MoS2 bilayer with versatile twist angles. It is found that the formation of twisted bilayer MoS2 homostructures sensitively depends on the gas-flow perturbation modes, correspondingly featuring the nucleation sites of the second layer at the same (homo-site) as or at the different (hetero-site) from that of the first layer. The commensurate twist angle of ≈22° in homo-site nucleation strategy accounts for ≈16% among the broad range of twist angles due to its low formation energy, which is in consistence with the theoretical calculation. More importantly, moiré interlayer excitons with the enhanced photoluminescence (PL) intensity and the prolonged lifetime are evidenced in the twisted bilayer MoS2 with a commensurate angle of 22°, which is owing to the reason that the strong moiré potential facilitates the interlayer excitons to be trapped in the moiré superlattices. The work provides a feasible route to controllably built twisted MoS2 homostructures with strong moiré potential to investigate the correlated physics in twistronics systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA