Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 39(1): e102030, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31774199

RESUMEN

Glioblastoma is one of the most lethal forms of adult cancer with a median survival of around 15 months. A potential treatment strategy involves targeting glioblastoma stem-like cells (GSC), which constitute a cell autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. Here, we report that the expression of the paracaspase mucosa-associated lymphoid tissue l (MALT1), a protease previously linked to antigen receptor-mediated NF-κB activation and B-cell lymphoma survival, inversely correlates with patient probability of survival. The knockdown of MALT1 largely impaired the expansion of patient-derived stem-like cells in vitro, and this could be recapitulated with pharmacological inhibitors, in vitro and in vivo. Blocking MALT1 protease activity increases the endo-lysosome abundance, impairs autophagic flux, and culminates in lysosomal-mediated cell death, concomitantly with mTOR inactivation and dispersion from endo-lysosomes. These findings place MALT1 as a new druggable target involved in glioblastoma and unveil ways to modulate the homeostasis of endo-lysosomes.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Endosomas/patología , Glioma/patología , Homeostasis , Lisosomas/patología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Células Madre Neoplásicas/patología , Anciano , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Endosomas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Humanos , Activación de Linfocitos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Células Madre Neoplásicas/metabolismo , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
EMBO Rep ; 20(10): e47840, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31410978

RESUMEN

The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.


Asunto(s)
Conexinas/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Necroptosis , Proteínas del Tejido Nervioso/metabolismo , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Supervivencia Celular , Silenciador del Gen , Células HT29 , Humanos , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Vesículas Transportadoras/metabolismo
3.
Cell Immunol ; 353: 104133, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32450431

RESUMEN

The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM complex has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF-κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165. The expression of a MALT1-insensitive version of HOIL1 reveals that this processing is involved in the optimal production of the NF-κB target cytokine interleukin-6. Lastly, we provide evidence that the guanine exchange factor GEF-H1 favors MALT1-mediated cleavage of HOIL1 and NF-κB signaling in this context. Together, our results unveil a critical role for the LUBAC as a positive regulator of NF-κB signaling downstream of LPA receptors.


Asunto(s)
Lisofosfolípidos/farmacología , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Animales , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Técnicas de Cultivo de Célula , Fibroblastos/metabolismo , Glicerofosfolípidos/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
J Cell Sci ; 129(9): 1775-80, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27006117

RESUMEN

Antigen-receptor-mediated activation of lymphocytes relies on a signalosome comprising CARMA1 (also known as CARD11), BCL10 and MALT1 (the CBM complex). The CBM activates nuclear factor κB (NF-κB) transcription factors by recruiting the 'linear ubiquitin assembly complex' (LUBAC), and unleashes MALT1 paracaspase activity. Although MALT1 enzyme shapes NF-κB signaling, lymphocyte activation and contributes to lymphoma growth, the identity of its substrates continues to be elucidated. Here, we report that the LUBAC subunit HOIL1 (also known as RBCK1) is cleaved by MALT1 following antigen receptor engagement. HOIL1 is also constitutively processed in the 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), which exhibits aberrant MALT1 activity. We further show that the overexpression of MALT1-insensitive HOIL1 mitigates T-cell-receptor-mediated NF-κB activation and subsequent cytokine production in lymphocytes. Thus, our results unveil HOIL1 as a negative regulator of lymphocyte activation cleaved by MALT1. This cleavage could therefore constitute an appealing therapeutic target for modulating immune responses.


Asunto(s)
Caspasas/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Caspasas/genética , Células HEK293 , Humanos , Células Jurkat , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas de Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
5.
Open Biol ; 14(2): 230456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412963

RESUMEN

Cytotoxic T lymphocytes (CTLs) are key effectors of the adaptive immune system that recognize and eliminate virally infected and cancerous cells. In naive CD8+ T cells, T-cell receptor (TCR) engagement drives a number of transcriptional, translational and proliferation changes over the course of hours and days leading to differentiation into CTLs. To gain a better insight into this mechanism, we compared the transcriptional profiles of naive CD8+ T cells to those of activated CTLs. To find new regulators of CTL function, we performed a selective clustered regularly interspaced short palindromic repeats (CRISPR) screen on upregulated genes and identified nuclear factor IL-3 (NFIL3) as a potential regulator of cytotoxicity. Although NFIL3 has established roles in several immune cells including natural killer, Treg, dendritic and CD4+ T cells, its function in CD8+ CTLs is less well understood. Using CRISPR/Cas9 editing, we found that removing NFIL3 in CTLs resulted in a marked decrease in cytotoxicity. We found that in CTLs lacking NFIL3 TCR-induced extracellular signal-regulated kinase phosphorylation, immune synapse formation and granule release were all intact while cytotoxicity was functionally impaired in vitro. Strikingly, NFIL3 controls the production of cytolytic proteins as well as effector cytokines. Thus, NFIL3 plays a cell intrinsic role in modulating cytolytic mechanisms in CTLs.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Linfocitos T Citotóxicos/metabolismo , Interleucina-3/metabolismo , Perforina/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
6.
iScience ; 25(10): 105118, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185361

RESUMEN

Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material from donor to recipient cells. EVs play key roles in glioblastoma progression because glioblastoma stem-like cells (GSCs) release pro-oncogenic, pro-angiogenic, and pro-inflammatory EVs. However, the molecular basis of EV release remains poorly understood. Here, we report the identification of the pseudokinase MLKL, a crucial effector of cell death by necroptosis, as a regulator of the constitutive secretion of EVs in GSCs. We find that genetic, protein, and pharmacological targeting of MLKL alters intracellular trafficking and EV release, and reduces GSC expansion. Nevertheless, this function ascribed to MLKL appears independent of its role during necroptosis. In vivo, pharmacological inhibition of MLKL reduces the tumor burden and the level of plasmatic EVs. This work highlights the necroptosis-independent role of MLKL in vesicle release and suggests that interfering with EVs is a promising therapeutic option to sensitize glioblastoma cells.

7.
Curr Opin Cell Biol ; 71: 87-94, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33711784

RESUMEN

The immune synapse is a very important but often transient site for secretion between immune cells. How secretion is controlled in a coordinated fashion at the synapse is a subject of much investigation. Two key mechanisms are the polarisation of the centrosome and rapid actin dynamics across the immune synapses that form between interacting immune cells. In recent years it has become clear that different immune cells utilise a diversity of immune synapses that modify these mechanisms in order to optimise specialised modes of secretion. Here we describe some of the latest research, focusing on regulation by centrosomal and actin dynamics in a variety of immune cells.


Asunto(s)
Citoesqueleto , Sinapsis Inmunológicas , Actinas , Centrosoma , Sinapsis
8.
J Cell Biol ; 220(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33956049

RESUMEN

Immune synapses are formed between immune cells to facilitate communication and coordinate the immune response. The reorganization of receptors involved in recognition and signaling creates a transient area of plasma membrane specialized in signaling and polarized secretion. Studies on the formation of the immune synapse between cytotoxic T lymphocytes (CTLs) and their targets uncovered a critical role for centrosome polarization in CTL function and suggested a striking parallel between the synapse and primary cilium. Since these initial observations, a plethora of further morphological, functional, and molecular similarities have been identified between these two fascinating structures. In this review, we describe how advances in imaging and molecular techniques have revealed additional parallels as well as functionally significant differences and discuss how comparative studies continue to shed light on the molecular mechanisms underlying the functions of both the immune synapse and primary cilium.


Asunto(s)
Cilios/fisiología , Sinapsis Inmunológicas/fisiología , Linfocitos T Citotóxicos/inmunología , Animales , Humanos , Transducción de Señal
9.
iScience ; 24(1): 101939, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33392484

RESUMEN

The adaptor SHARPIN composes, together with the E3 ligases HOIP and HOIL1, the linear ubiquitin chain assembly complex (LUBAC). This enzymatic complex catalyzes and stamps atypical linear ubiquitin chains onto substrates to modify their fate and has been linked to the regulation of the NF-κB pathway downstream of most immunoreceptors, inflammation, and cell death. However, how this signaling complex is regulated is not fully understood. Here, we report that a portion of SHARPIN is constitutively phosphorylated on the serine at position 165 in lymphoblastoid cells and can be further induced following T cell receptor stimulation. Analysis of a phosphorylation-resistant mutant of SHARPIN revealed that this mark controls the linear ubiquitination of the NF-κB regulator NEMO and allows the optimal activation of NF-κB in response to TNFα. These results identify an additional layer of regulation of the LUBAC and unveil potential strategies to modulate its action.

10.
Cell Rep ; 27(6): 1657-1665.e4, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067453

RESUMEN

The tumor suppressor CYLD is a deubiquitinating enzyme that removes non-degradative ubiquitin linkages bound to a variety of signal transduction adaptors. CYLD participates in the formation of primary cilia, a microtubule-based structure that protrudes from the cell body to act as a "sensing antenna." Yet, how exactly CYLD regulates ciliogenesis is not fully understood. Here, we conducted an unbiased proteomic screen of CYLD binding partners and identified components of the centriolar satellites. These small granular structures, tethered to the scaffold protein pericentriolar matrix protein 1 (PCM1), gravitate toward the centrosome and orchestrate ciliogenesis. CYLD knockdown promotes PCM1 degradation and the subsequent dismantling of the centriolar satellites. We found that CYLD marshals the centriolar satellites by deubiquitinating and preventing the E3 ligase Mindbomb 1 (MIB1) from marking PCM1 for proteasomal degradation. These results link CYLD to the regulation of centriolar satellites proteostasis and provide insight into how reversible ubiquitination finely tunes ciliogenesis.


Asunto(s)
Centriolos/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Humanos , Unión Proteica , Proteostasis , Ubiquitinación
11.
Front Oncol ; 8: 498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30474008

RESUMEN

Piracy of the NF-κB transcription factors signaling pathway, to sustain its activity, is a mechanism often deployed in B-cell lymphoma to promote unlimited growth and survival. The aggressive activated B-cell like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) exploits a multi-protein complex of CARMA1, BCL10, and MALT1 (CBM complex), which normally conveys NF-κB signaling upon antigen receptors engagement. Once assembled, the CBM also unleashes MALT1 protease activity to finely tune the immune response. As a result, ABC DLBCL tumors develop a profound addiction to NF-κB and to MALT1 enzyme, leaving open a breach for therapeutics. However, the pleiotropic nature of NF-κB jeopardizes the success of its targeting and urges us to develop new strategies. In this review, we discuss how post-translational modifications, such as phosphorylation and ubiquitination of the CBM components, as well as, MALT1 proteolytic activity, shape the CBM activity in lymphocytes and ABC DLBCL, and may provide new avenues to restore vulnerability in lymphoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA