Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839608

RESUMEN

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Malaria/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium/fisiología , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Exocitosis , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Vesículas Secretoras/metabolismo
3.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053330

RESUMEN

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores Virales/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia/métodos , Células Jurkat , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL
4.
Proc Natl Acad Sci U S A ; 120(47): e2302126120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967215

RESUMEN

Neurotransmitter receptors are increasingly recognized to play important roles in anti-tumor immunity. The expression of the ion channel N-methyl-D-aspartate receptor (NMDAR) on macrophages was reported, but the role of NMDAR on macrophages in the tumor microenvironment (TME) remains unknown. Here, we show that the activation of NMDAR triggered calcium influx and reactive oxygen species production, which fueled immunosuppressive activities in tumor-associated macrophages (TAMs) in the hepatocellular sarcoma and fibrosarcoma tumor settings. NMDAR antagonists, MK-801, memantine, and magnesium, effectively suppressed these processes in TAMs. Single-cell RNA sequencing analysis revealed that blocking NMDAR functionally and metabolically altered TAM phenotypes, such that they could better promote T cell- and Natural killer (NK) cell-mediated anti-tumor immunity. Treatment with NMDAR antagonists in combination with anti-PD-1 antibody led to the elimination of the majority of established preclinical liver tumors. Thus, our study uncovered an unknown role for NMDAR in regulating macrophages in the TME of hepatocellular sarcoma and provided a rationale for targeting NMDAR for tumor immunotherapy.


Asunto(s)
Neoplasias Hepáticas , Sarcoma , Humanos , Macrófagos Asociados a Tumores , Procesos Neoplásicos , Memantina , Microambiente Tumoral
5.
Arch Gynecol Obstet ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836929

RESUMEN

PURPOSE: The receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL) have been shown to promote proliferation of the breast and breast carcinogenesis. The objective of this analysis was to investigate whether tumor-specific RANK and RANKL expression in patients with primary breast cancer is associated with high percentage mammographic density (PMD), which is a known breast cancer risk factor. METHODS: Immunohistochemical staining of RANK and RANKL was performed in tissue microarrays (TMAs) from primary breast cancer samples of the Bavarian Breast Cancer Cases and Controls (BBCC) study. For RANK and RANKL expression, histochemical scores (H scores) with a cut-off value of > 0 vs 0 were established. PMD was measured in the contralateral, non-diseased breast. Linear regression models with PMD as outcome were calculated using common predictors of PMD (age at breast cancer diagnosis, body mass index (BMI) and parity) and RANK and RANKL H scores. Additionally, Spearman rank correlations (ρ) between PMD and RANK and RANKL H score were performed. RESULTS: In the final cohort of 412 patients, breast cancer-specific RANK and RANKL expression was not associated with PMD (P = 0.68). There was no correlation between PMD and RANK H score (Spearman's ρ = 0.01, P = 0.87) or RANKL H score (Spearman's ρ = 0.04, P = 0.41). RANK expression was highest in triple-negative tumors, followed by HER2-positive, luminal B-like and luminal A-like tumors, while no subtype-specific expression of RANKL was found. CONCLUSION: Results do not provide evidence for an association of RANK and RANKL expression in primary breast cancer with PMD.

6.
Immunol Rev ; 276(1): 112-120, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28258695

RESUMEN

While therapies targeting the co-inhibitory or immune checkpoint receptors PD-1 and CTLA-4 have shown remarkable success in many cancers, not all patients benefit from these therapies. This has catalyzed enormous interest in the targeting of other immune checkpoint receptors. In this regard, TIGIT and CD96 have recently entered the limelight as novel immune checkpoint receptor targets. TIGIT and CD96 together with the co-stimulatory receptor CD226 form a pathway that is analogous to the CD28/CTLA-4 pathway, in which shared ligands and differential receptor:ligand affinities fine-tune the immune response. Although the roles of TIGIT and CD96 as immune checkpoint receptors in T cell and natural killer cell biology are just beginning to be uncovered, accumulating data support the targeting of these receptors for improving anti-tumor immune responses. A clear understanding of the immune cell populations regulated by TIGIT and CD96 is key to the design of immunotherapies that target these receptors in combination with other existing immune checkpoint blockade therapies.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/metabolismo , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Receptores Inmunológicos/metabolismo , Linfocitos T/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Humanos , Activación de Linfocitos , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/inmunología , Transducción de Señal , Escape del Tumor
7.
Blood ; 132(16): 1689-1694, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29986909

RESUMEN

Immune-based therapies hold promise for the treatment of multiple myeloma (MM), but so far, immune checkpoint blockade targeting programmed cell death protein 1 has not proven effective as single agent in this disease. T-cell immunoglobulin and ITIM domains (TIGIT) is another immune checkpoint receptor known to negatively regulate T-cell functions. In this study, we investigated the therapeutic potential of TIGIT blockade to unleash immune responses against MM. We observed that, in both mice and humans, MM progression was associated with high levels of TIGIT expression on CD8+ T cells. TIGIT+ CD8+ T cells from MM patients exhibited a dysfunctional phenotype characterized by decreased proliferation and inability to produce cytokines in response to anti-CD3/CD28/CD2 or myeloma antigen stimulation. Moreover, when challenged with Vk*MYC mouse MM cells, TIGIT-deficient mice showed decreased serum monoclonal immunoglobulin protein levels associated with reduced tumor burden and prolonged survival, indicating that TIGIT limits antimyeloma immune responses. Importantly, blocking TIGIT using monoclonal antibodies increased the effector function of MM patient CD8+ T cells and suppressed MM development. Altogether our data provide evidence for an immune-inhibitory role of TIGIT in MM and support the development of TIGIT-blocking strategies for the treatment of MM patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/inmunología , Mieloma Múltiple/prevención & control , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Células Cultivadas , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mieloma Múltiple/etiología , Mieloma Múltiple/patología , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/fisiología
8.
Immunol Cell Biol ; 97(2): 152-164, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30222899

RESUMEN

CD96 has recently been shown to be a potent immune checkpoint molecule in mice, but a similar role in humans is not known. In this study, we provide a detailed map of CD96 expression across human lymphocyte lineages, the kinetics of CD96 regulation on T-cell activation and co-expression with other conventional and emerging immune checkpoint molecules. We show that CD96 is predominantly expressed by T cells and has a unique lymphocyte expression profile. CD96high T cells exhibited distinct effector functions on activation. Of note, CD96 expression was highly correlated with T-cell markers in primary and metastatic human tumors and was elevated on antigen-experienced T cells and tumor-infiltrating lymphocytes. Collectively, these data demonstrate that CD96 may be a promising immune checkpoint to enhance T-cell function against human cancer and infectious disease.


Asunto(s)
Antígenos CD/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T/inmunología , Antígenos CD/biosíntesis , Humanos , Inmunofenotipificación , Activación de Linfocitos , Subgrupos Linfocitarios/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Metástasis de la Neoplasia/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T/metabolismo , Transcriptoma
9.
Breast Cancer Res Treat ; 164(1): 57-67, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28417335

RESUMEN

PURPOSE: As clinical studies have correlated RANK expression levels with survival in breast cancer, and that RANK signaling is dependent on its cognate ligand RANKL, we hypothesized that dual protein expression further stratifies the poor outcome in TNBC. METHODS: RANK mRNA and protein expression was evaluated in TNBC using genomic databases, cell lines and in a tissue microarray of curated primary tumor samples derived from 87 patients with TNBC. RANK expression was evaluated either by Mann-Whitney U test on log-normalized gene expression data or by Student's t test on FACS data. Analysis of RANK and RANKL immunostaining was calculated by H-score, and correlations to clinical factors performed using χ 2 or Fisher's exact test. Associations with RFS and OS were assessed using univariate and multivariate Cox proportional hazard models. Survival estimates were generated using the Kaplan-Meier method. RESULTS: In three distinct datasets spanning 684 samples, RANK mRNA expression was higher in primary tumors derived from TNBC patients than from those with other molecular subtypes (P < 0.01). Cell surface-localized RANK protein was consistently higher in TNBC cell lines (P = 0.037). In clinical samples, TNBC patients that expressed both RANK and RANKL proteins had significantly worse RFS (P = 0.0032) and OS (P = 0.004) than patients with RANK-positive, RANKL-negative tumors. RANKL was an independent, poor prognostic factor for RFS (P = 0.04) and OS (P = 0.01) in multivariate analysis in samples that expressed both RANK and RANKL. CONCLUSIONS: RANK and RANKL co-expression is associated with poor RFS and OS in patients with TNBC.


Asunto(s)
Pronóstico , Ligando RANK/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/clasificación , Neoplasias de la Mama Triple Negativas/patología
10.
Stem Cells ; 34(4): 1027-39, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26695351

RESUMEN

Prolactin and progesterone both orchestrate the proliferation and differentiation of the mammary gland during gestation. Differentiation of milk secreting alveoli depends on the presence of prolactin receptor, the downstream Jak2-Stat5 pathway and the transcription factor Elf5. A strict regulation of Rank signaling is essential for the differentiation of the mammary gland and in particular for alveolar commitment. Impaired alveologenesis and lactation failure are observed in both, knockout and Rank overexpressing mice; however, the underlying molecular mechanism responsible for these phenotypes remains largely unknown. Using genome-wide expression analyses and functional studies, we show here that Rankl (RL) exposure leads to impaired secretory differentiation of alveolar cells not only in MMTV-RANK but also in wild-type (WT) mammary acini. Conversely, pharmacological blockage of Rank signaling at midgestation in WT mice leads to precocious and exacerbated lactogenesis. Mechanistically, RL negatively regulates Stat5 phosphorylation and Elf5 expression at the onset of lactogenesis. Continuous RL exposure leads to the expansion of basal and bipotent cells in WT and MMTV-RANK acini. Overall, we demonstrate that enhanced Rank signaling impairs secretory differentiation during pregnancy by inhibition of the prolactin/p-Stat5 pathway.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Prolactina/genética , Ligando RANK/genética , Factor de Transcripción STAT5/genética , Factores de Transcripción/genética , Animales , Proliferación Celular/genética , Proteínas de Unión al ADN/biosíntesis , Femenino , Regulación del Desarrollo de la Expresión Génica , Janus Quinasa 2/biosíntesis , Janus Quinasa 2/genética , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Noqueados , Embarazo , Progesterona/genética , Progesterona/metabolismo , Prolactina/metabolismo , Ligando RANK/biosíntesis , Factor de Transcripción STAT5/biosíntesis , Transducción de Señal , Factores de Transcripción/biosíntesis
11.
Nature ; 468(7320): 103-7, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20881963

RESUMEN

RANK ligand (RANKL), a TNF-related molecule, is essential for osteoclast formation, function and survival through interaction with its receptor RANK. Mammary glands of RANK- and RANKL-deficient mice develop normally during sexual maturation, but fail to form lobuloalveolar structures during pregnancy because of defective proliferation and increased apoptosis of mammary epithelium. It has been shown that RANKL is responsible for the major proliferative response of mouse mammary epithelium to progesterone during mammary lactational morphogenesis, and in mouse models, manipulated to induce activation of the RANK/RANKL pathway in the absence of strict hormonal control, inappropriate mammary proliferation is observed. However, there is no evidence so far of a functional contribution of RANKL to tumorigenesis. Here we show that RANK and RANKL are expressed within normal, pre-malignant and neoplastic mammary epithelium, and using complementary gain-of-function (mouse mammary tumour virus (MMTV)-RANK transgenic mice) and loss-of function (pharmacological inhibition of RANKL) approaches, define a direct contribution of this pathway in mammary tumorigenesis. Accelerated pre-neoplasias and increased mammary tumour formation were observed in MMTV-RANK transgenic mice after multiparity or treatment with carcinogen and hormone (progesterone). Reciprocally, selective pharmacological inhibition of RANKL attenuated mammary tumour development not only in hormone- and carcinogen-treated MMTV-RANK and wild-type mice, but also in the MMTV-neu transgenic spontaneous tumour model. The reduction in tumorigenesis upon RANKL inhibition was preceded by a reduction in pre-neoplasias as well as rapid and sustained reductions in hormone- and carcinogen-induced mammary epithelial proliferation and cyclin D1 levels. Collectively, our results indicate that RANKL inhibition is acting directly on hormone-induced mammary epithelium at early stages in tumorigenesis, and the permissive contribution of progesterone to increased mammary cancer incidence is due to RANKL-dependent proliferative changes in the mammary epithelium. The current study highlights a potential role for RANKL inhibition in the management of proliferative breast disease.


Asunto(s)
Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Progestinas/efectos adversos , Ligando RANK/metabolismo , 9,10-Dimetil-1,2-benzantraceno/administración & dosificación , 9,10-Dimetil-1,2-benzantraceno/efectos adversos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/fisiología , Acetato de Medroxiprogesterona/administración & dosificación , Acetato de Medroxiprogesterona/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Invasividad Neoplásica , Lesiones Precancerosas/patología , Lesiones Precancerosas/prevención & control , Progesterona/administración & dosificación , Progesterona/efectos adversos , Progestinas/administración & dosificación , Ligando RANK/antagonistas & inhibidores , Ligando RANK/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo
12.
Breast Cancer Res ; 17: 24, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25849336

RESUMEN

INTRODUCTION: RANKL is important in mammary gland development during pregnancy and mediates the initiation and progression of progesterone-induced breast cancer. No clinical data are available on the effect of pregnancy on RANK/RANKL expression in young breast cancer patients. METHODS: We used our previously published dataset of 65 pregnant and 130 matched young breast cancer patients with full clinical, pathological, and survival information. 85% of patients had available transcriptomic data as well. RANK/RANKL expression by immunohistochemistry using H-score on the primary tumor and adjacent normal tissue was performed. We examined the difference in expression of RANK/RANKL between pregnant and non-pregnant patients and their association with clinicopathological features and prognosis. We also evaluated genes and pathways associated with RANK/RANKL expression on primary tumors. RESULTS: RANKL but not RANK expression was more prevalent in the pregnant group, both on the tumor and adjacent normal tissue, independent of other clinicopathological factors (both P <0.001). 18.7% of pregnant and 5.3% of non-pregnant patients had tumors showing ≥10% of cells with 3+ RANKL expression. RANKL expression was significantly higher in progesterone receptor-positive, and luminal A-like tumors, with negative correlation with Ki-67 (all P <0.001). On the contrary, RANK expression was higher in triple negative tumors (P <0.001). Using false discovery rate <0.05, 151 and 1,207 genes were significantly correlated with tumor-expressed RANKL and RANK expression by immunohistochemistry, respectively. High RANKL expression within primary tumor was associated with pathways related to mammary gland development, bone resorption, T-cell proliferation and regulation of chemotaxis, while RANK expression was associated with immune response and proliferation pathways. At a median follow-up of 65 months, neither RANK nor RANKL expression within tumor was associated with disease free survival in pregnant or non-pregnant group. CONCLUSIONS: Pregnancy increases RANKL expression both in normal breast and primary tumors. These results could guide further development of RANKL-targeted therapy.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Ligando RANK/genética , Adulto , Factores de Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Embarazo , Pronóstico , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Transducción de Señal , Carga Tumoral
13.
Breast Cancer Res Treat ; 146(3): 515-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25007964

RESUMEN

The receptor activator of nuclear factor-κB ligand (RANKL) acts as a paracrine factor in progesterone-induced mammary epithelial proliferation and tumorigenesis. This evidence comes mainly from mouse models. Our aim was to examine whether RANKL expression in human normal and malignant breast is under the control of progesterone throughout the menstrual cycle. Breast epithelial samples were obtained by random fine needle aspiration (rFNA) of the contralateral unaffected breasts (CUB) of 18 breast cancer patients, with simultaneous serum hormone measurements. Genes correlated with serum progesterone levels were identified through Illumina microarray analysis. Validation was performed using qRT-PCR in rFNA samples from CUB of an additional 53 women and using immunohistochemistry in tissue microarrays of 61 breast cancer samples. Expression of RANKL, DIO2, and MYBPC1 was correlated with serum progesterone in CUB, and was significantly higher in luteal phase. RANKL and MYBPC1 mRNA expression were highly correlated between CUB and matched tumor samples. RANKL protein expression was also significantly increased in the luteal phase and highly correlated with serum progesterone levels in cancer samples, especially in hormone receptor positive tumors. The regulatory effects of progesterone on the expression of RANKL, DIO2, and MYBPC1 were confirmed in three-dimensional cultures of normal breast organoids. In normal breast and in breast cancer, RANKL mRNA and protein expression fluctuate with serum progesterone with highest levels in the luteal phase, suggesting that RANKL is a modulator of progesterone signaling in normal and malignant breast tissue and a potential biomarker of progesterone action and blockade.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis , Progesterona/sangre , Ligando RANK/biosíntesis , Adulto , Anciano , Biopsia con Aguja Fina , Neoplasias de la Mama/patología , Proteínas Portadoras/biosíntesis , Estradiol/sangre , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Yoduro Peroxidasa/biosíntesis , Fase Luteínica/genética , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ciclo Menstrual/metabolismo , Persona de Mediana Edad , Cultivo Primario de Células , Ligando RANK/sangre , Ligando RANK/genética , Yodotironina Deyodinasa Tipo II
14.
Breast Cancer Res Treat ; 145(2): 307-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24737168

RESUMEN

RANK ligand (RANKL) is crucial for the development of mouse mammary glands during pregnancy. RANKL functions as a major paracrine effector of the mitogenic action of progesterone in mammary epithelium via its receptor RANK and has a role in expansion and regenerative potential of mammary stem cells. Pharmacologic inhibition of RANKL attenuates the development of mammary carcinoma and inhibits metastatic progression in multiple mouse models. Primary breast carcinoma samples from the neoadjuvant GeparTrio study were analyzed to correlate the expression of human RANK and RANKL with pathological complete response (pCR), disease-free (DFS), and overall (OS) survival. Pre-treatment FFPE core biopsies (n = 601) were analyzed for percentage and intensity of immunohistochemical RANK and RANKL expression. Antibodies against human RANK (N-1H8; Amgen) and human RANKL (M366; Amgen) were used. RANK protein was expressed in 160 (27 %) patients. Increased RANK expression was observed in 14.5 % of patients and correlated with high tumor grade (p < 0.023) and negative hormone receptor (HR) status (p < 0.001). Patients with high RANK expression showed a higher pCR rate (23.0 % vs. 12.6 %, p = 0.010), shorter DFS (p = 0.038), and OS (p = 0.011). However, prognostic and predictive information was not an independent parameter. Only 6 % of samples expressed RANKL, which was not correlated with any clinical features. Higher RANK expression in the primary tumor is associated with a higher sensitivity to chemotherapy, but also a higher risk of relapse and death. Our study provides a basis for further exploration of the antitumor activity of clinical antibodies against RANKL.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Neoplasias de la Mama/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Valor Predictivo de las Pruebas
15.
Stem Cells ; 31(9): 1954-65, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23766243

RESUMEN

Receptor Activator of NF-kappa B (RANK) pathway controls mammary gland development in mice but its role in mammary stem cell fate remains undefined. We show that constitutive RANK signaling expands luminal and basal mammary compartments including mammary stem and luminal progenitor cell pools and interferes with the generation of CD61+ and Sca1+ luminal cells and Elf5 expression. Impaired mammary cell commitment upon RANK overexpression leads to the accumulation of progenitors including K14+K8+ bipotent cells and the formation of heterogeneous tumors containing hyperplastic basal, luminal, and progenitor cells. RANK expression increases in wild-type mammary epithelia with age and parity, and spontaneous preneoplastic lesions express RANK and accumulate K14+K8+ cells. In human breast tumors, high RANK expression levels are also associated with altered mammary differentiation. These results suggest that increased RANK signaling interferes with mammary cell commitment, contributing to breast carcinogenesis.


Asunto(s)
Carcinogénesis/patología , Linaje de la Célula , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Envejecimiento/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Compartimento Celular , Diferenciación Celular , Forma de la Célula , Epitelio/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinas/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Virus del Tumor Mamario del Ratón/fisiología , Ratones , Modelos Biológicos , Paridad , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Embarazo , Receptor Activador del Factor Nuclear kappa-B/genética , Células Madre/metabolismo
16.
Geburtshilfe Frauenheilkd ; 84(1): 77-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38178900

RESUMEN

Introduction: The receptor activator of nuclear factor-κB (RANK) pathway was associated with the pathogenesis of breast cancer. Several studies attempted to link the RANK/RANKL pathway to prognosis; however, with inconsistent outcomes. We aimed to further contribute to the knowledge about RANK/RANKL as prognostic factors in breast cancer. Within this study, protein expression of RANK and its ligand, RANKL, in the tumor tissue was analyzed in association with disease-free survival (DFS) and overall survival (OS) in a study cohort of patients with early breast cancer. Patients and Methods: 607 samples of female primary and early breast cancer patients from the Bavarian Breast Cancer Cases and Controls Study were analyzed to correlate the RANK and RANKL expression with DFS and OS. Therefore, expression was quantified using immunohistochemical staining of a tissue microarray. H-scores were determined with the cut-off value of 8.5 for RANK and 0 for RANKL expression, respectively. Results: RANK and RANKL immunohistochemistry were assessed by H-score. Both biomarkers did not correlate (ρ = -0.04). According to molecular subtypes, triple-negative tumors and HER2-positive tumors showed a higher number of RANK-positive tumors (H-score ≥ 8.5), however, no subtype-specific expression of RANKL could be detected. Higher RANKL expression tended to correlate with a better prognosis. However, RANK and RANKL expression could not be identified as statistically significant prognostic factors within the study cohort. Conclusions: Tumor-specific RANK and RANKL expressions are not applicable as prognostic factors for DFS and OS, but might be associated with subtype-specific breast cancer progression.

17.
Breast Cancer Res ; 15(4): R62, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23938070

RESUMEN

INTRODUCTION: Menopausal hormone therapies vary widely in their effects on breast cancer risk, and the mechanisms underlying these differences are unclear. The primary goals of this study were to characterize the mammary gland transcriptional profile of estrogen + progestin therapy in comparison with estrogen-alone or tibolone and investigate pathways of cell proliferation in a postmenopausal primate model. METHODS: Ovariectomized female cynomolgus macaque monkeys were randomized into the following groups: placebo (Con), oral conjugated equine estrogens (CEE), CEE with medroxyprogesterone acetate (MPA) (CEE + MPA), and tibolone given at a low or high dose (Lo or Hi Tib). All study treatment doses represented human clinical dose equivalents and were administered in the diet over a period of 2 years. RESULTS: Treatment with CEE + MPA had the greatest effect on global mRNA profiles and markers of mammary gland proliferation compared to CEE or tibolone treatment. Changes in the transcriptional patterns resulting from the addition of MPA to CEE were related to increased growth factors and decreased estrogen receptor (ER) signaling. Specific genes induced by CEE + MPA treatment included key members of prolactin receptor (PRLR)/signal transducer and activator of transcription 5 (STAT5), epidermal growth factor receptor (EGFR), and receptor activator of nuclear factor kappa B (RANK)/receptor activator of nuclear factor kappa B ligand (RANKL) pathways that were highly associated with breast tissue proliferation. In contrast, tibolone did not affect breast tissue proliferation but did elicit a mixed pattern of ER agonist activity. CONCLUSION: Our findings indicate that estrogen + progestin therapy results in a distinct molecular profile compared to estrogen-alone or tibolone therapy, including upregulation of key growth factor targets associated with mammary carcinogenesis in mouse models. These changes may contribute to the promotional effects of estrogen + progestin therapy on breast cancer risk.


Asunto(s)
Glándulas Mamarias Animales/metabolismo , Posmenopausia , Progestinas/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Células Epiteliales/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Perfilación de la Expresión Génica , Terapia de Reemplazo de Hormonas , Humanos , Inmunohistoquímica , Macaca fascicularis , Glándulas Mamarias Animales/efectos de los fármacos , Norpregnenos/farmacología , Progestinas/farmacología , Ligando RANK/genética , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Leukemia ; 37(2): 379-387, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539557

RESUMEN

Redirection of tumor-associated macrophages to eliminate tumor cells holds great promise for overcoming therapeutic resistance to rituximab and other antibody drugs. Here, we determined the expression of ectonucleotidases CD39 and CD73 in diffuse large B-cell lymphoma (DLBCL), and examined the impact of extracellular ATP (eATP) metabolism on macrophage-mediated anti-lymphoma immunity. Immunostaining of tissue microarray samples showed that CD39 (the ecto-enzyme for eATP hydrolysis) was highly expressed in tumors with the non-germinal center B-cell-like (non-GCB) subtype, and to a lesser extent tumors with the GCB subtype. By contrast, the expression of CD73 (the ecto-enzyme for adenosine generation) was undetectable in tumor cells. Pharmacological blockade of CD39 prevented eATP degradation and enhanced engulfment of antibody-coated lymphoma cells by macrophages in a P2X7 receptor-dependent manner, indicating that eATP fueled antibody-dependent cellular phagocytosis (ADCP) activity. Importantly, inhibition of CD39 augmented in vivo anti-lymphoma effects by therapeutic antibodies including rituximab and daratumumab. Furthermore, the addition of a CD39 inhibitor to anti-CD20 and anti-CD47 combination therapy significantly improved survival in a disseminated model of aggressive B-cell lymphoma, supporting the benefit of dual targeting CD39-mediated eATP hydrolysis and CD47-mediated "don't eat me" signal. Together, preventing eATP degradation may be a potential approach to unleash macrophage-mediated anti-lymphoma immunity.


Asunto(s)
Linfoma de Células B Grandes Difuso , Macrófagos , Humanos , Rituximab/farmacología , Rituximab/uso terapéutico , Adenosina/metabolismo , Linfoma de Células B Grandes Difuso/patología , Fagocitosis
19.
Breast Cancer Res Treat ; 135(3): 771-80, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22926264

RESUMEN

Tumor cells in bone can induce the activation of osteoclasts, which mediate bone resorption and release of growth factors and calcium from the bone matrix, resulting in a cycle of tumor growth and bone breakdown. Targeting the bone microenvironment by the inhibition of RANKL, an essential mediator of osteoclast function, not only prevents tumor-induced osteolysis but also decreases skeletal tumor burden in preclinical models. The inhibition of skeletal tumor progression after the inhibition of osteoclasts is via interruption of the "vicious cycle" of tumor/bone interactions. The majority of breast cancer patients at risk for bone metastases harbor estrogen receptor-positive (ER+) tumors. We developed a mouse model for ER+ breast cancer bone metastasis and evaluated the effect of RANKL inhibition on tumor-induced osteolysis and skeletal tumor growth both alone and in combination with tamoxifen. Luciferase-labeled MCF-7 cells (MCF-7Luc) formed metastatic foci in the hind limbs following intracardiac injection and caused mixed osteolytic/osteoblastic lesions. RANKL inhibition by OPG-Fc treatment blocked osteoclast activity and prevented tumor-induced osteolysis, as well as caused a marked decrease in skeletal tumor burden. Tamoxifen as a single agent reduced MCF-7Luc tumor growth in the hind limbs. In a combination experiment, OPG-Fc plus tamoxifen resulted in significantly greater tumor growth inhibition than either single agent alone. Histologic analysis revealed a decrease in the proliferation of tumor cells by both single agents, which was enhanced in the combination treatment. Upon treatment with OPG-Fc alone or in combination with tamoxifen, there was a complete absence of osteolytic lesions, demonstrating the ability of RANKL inhibition to prevent skeletal related morbidity in an ER+ model. The combination approach of targeting osteoclasts and the bone microenvironment by RANKL inhibition and the tumor directly via hormonal therapy may provide additional benefit to reducing skeletal tumor progression in ER+ breast cancer patients.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Ligando RANK/antagonistas & inhibidores , Tamoxifeno/farmacología , Animales , Apoptosis/efectos de los fármacos , Conservadores de la Densidad Ósea/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Osteoprotegerina/farmacología , Ligando RANK/metabolismo , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Microambiente Tumoral
20.
Mol Cell Biol ; 27(4): 1442-54, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17145767

RESUMEN

RANK and RANKL, the key regulators of osteoclast differentiation and activation, also play an important role in the control of proliferation and differentiation of mammary epithelial cells during pregnancy. Here, we show that RANK protein expression is strictly regulated in a spatial and temporal manner during mammary gland development. RANK overexpression under the control of the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model results in increased mammary epithelial cell proliferation during pregnancy, impaired differentiation of lobulo-alveolar structures, decreased expression of the milk proteins beta-casein and whey acidic protein, and deficient lactation. We also show that treatment of three-dimensional in vitro cultures of primary mammary cells from MMTV-RANK mice with RANKL results in increased proliferation and decreased apoptosis in the luminal area, resulting in bigger acini with filled lumens. Taken together, these results suggest that signaling through RANK not only promotes proliferation but also inhibits the terminal differentiation of mammary epithelial cells. Moreover, the increased proliferation and survival observed in a three-dimensional culture system suggests a role for aberrant RANK signaling during breast tumorigenesis.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Expresión Génica , Glándulas Mamarias Animales/citología , Virus del Tumor Mamario del Ratón/genética , Regiones Promotoras Genéticas/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Animales , Caseínas/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Proteínas de la Leche/genética , Embarazo , Regiones Promotoras Genéticas/efectos de los fármacos , Ligando RANK/genética , Ligando RANK/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA