Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 50(22): 12872-12884, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36511874

RESUMEN

Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.


Asunto(s)
Proteínas de Escherichia coli , Replicación del ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Reparación del ADN/genética
2.
Am J Physiol Renal Physiol ; 325(5): F656-F668, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706232

RESUMEN

The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.


Asunto(s)
Factores de Transcripción ARNTL , Hipertensión , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Citocinas , Dieta , Hipertensión/genética , Hipertensión/prevención & control , Riñón/metabolismo , Ratones Noqueados , Cloruro de Sodio Dietético
3.
Can J Physiol Pharmacol ; 101(3): 136-146, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450128

RESUMEN

Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.


Asunto(s)
Relojes Circadianos , Hipertensión , Ratas , Ratones , Animales , Ratas Endogámicas Dahl , Relojes Circadianos/genética , Endotelinas , Riñón/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Factores de Transcripción/metabolismo , Presión Sanguínea/fisiología , Proteínas Circadianas Period/genética
4.
Physiology (Bethesda) ; 36(1): 35-43, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33325818

RESUMEN

The peptide hormone endothelin-1 and its receptors are linked to several disease states. Pharmacological inhibition of this pathway has proven beneficial in pulmonary hypertension, yet its potential in other disease states remains to be realized. This review considers an often understudied aspect of endothelin biology, circadian rhythm regulation and how understanding the intersection between endothelin signaling and the circadian clock may be leveraged to realize the potential of endothelin-based therapeutics.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Endotelinas , Humanos , Transducción de Señal
5.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129370

RESUMEN

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Asunto(s)
Aldosterona , Relojes Circadianos , Hipertensión , Riñón , Proteínas Circadianas Period , Aldosterona/sangre , Animales , Cadherinas/metabolismo , Relojes Circadianos/genética , Expresión Génica , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
6.
Biophys J ; 120(1): 73-85, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33221249

RESUMEN

Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli ß-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the ß-clamp is of the order of 10 pM in buffers of moderate ionic strength. Coulombic electrostatic interactions have been shown to contribute to this remarkable stability. Increasing NaCl concentration in the assay buffer results in decreased dimer stability and faster subunit dissociation kinetics in a way consistent with simple charge-screening models. Here, we examine non-Coulombic ionic effects on the oligomerization properties of sliding clamps. We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Replacing NaCl by KGlu, the primary cytoplasmic salt in E. coli, results in a decrease of the diffusion coefficient of these proteins consistent with the formation of protein assemblies. The UV-vis spectrum of the ß-clamp labeled with tetramethylrhodamine shows the characteristic absorption band of dimers of rhodamine when KGlu is present in the buffer. This suggests that KGlu induces the formation of assemblies that involve two or more rings stacked face-to-face. Results can be quantitatively explained on the basis of unfavorable interactions between KGlu and the functional groups on the protein surface, which drive biomolecular processes that bury exposed surface. Similar results were obtained with the Saccharomyces cerevisiae PCNA sliding clamp, suggesting that KGlu effects are not specific to the ß-clamp. Clamp association is also promoted by glycine betaine, a zwitterionic compound that accumulates intracellularly when E. coli is exposed to high concentrations of extracellular solute. Possible biological implications are discussed.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Betaína , Replicación del ADN , Escherichia coli/metabolismo , Ácido Glutámico , Antígeno Nuclear de Célula en Proliferación/metabolismo
7.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338037

RESUMEN

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea , Ritmo Circadiano , Nefronas/metabolismo , Reabsorción Renal , Sodio/metabolismo , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Animales , Femenino , Genotipo , Homeostasis , Túbulos Renales Colectores/metabolismo , Masculino , Ratones Noqueados , Fenotipo , Potasio en la Dieta/metabolismo , Factores Sexuales , Factores de Tiempo
8.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32437627

RESUMEN

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Asunto(s)
Endotelina-1/metabolismo , Hipertensión/metabolismo , Túbulos Renales Colectores/fisiopatología , Proteínas Circadianas Period/metabolismo , Eliminación Renal/fisiología , Aldosterona/administración & dosificación , Aldosterona/efectos adversos , Animales , Relojes Circadianos/fisiología , Modelos Animales de Enfermedad , Endotelina-1/orina , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Eliminación Renal/efectos de los fármacos , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427705

RESUMEN

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipertensión/genética , Proteínas Circadianas Period/deficiencia , Animales , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Femenino , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloruro de Sodio Dietético/metabolismo
10.
Nucleic Acids Res ; 45(17): 10178-10189, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973453

RESUMEN

Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated. Mutations were introduced into the Escherichia coli ß-sliding clamp that destabilize the dimer interface to determine whether the formation of an open clamp loader-clamp complex is dependent on spontaneous clamp opening events. In other work, we showed that mutation of a positively charged Arg residue at the ß-dimer interface and high NaCl concentrations destabilize the clamp, but neither facilitates the formation of an open clamp loader-clamp complex in experiments presented here. Clamp opening reactions could be fit to a minimal three-step 'bind-open-lock' model in which the clamp loader binds a closed clamp, the clamp opens, and subsequent conformational rearrangements 'lock' the clamp loader-clamp complex in a stable open conformation. Our results support a model in which the E. coli clamp loader actively opens the ß-sliding clamp.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , ADN Polimerasa III/química , ADN Bacteriano/genética , Dimerización , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Químicos , Modelos Moleculares , Mutación Missense , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Subunidades de Proteína , Cloruro de Sodio/farmacología , Relación Estructura-Actividad
11.
Am J Physiol Renal Physiol ; 314(6): F1138-F1144, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357420

RESUMEN

Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.


Asunto(s)
Presión Sanguínea , Ritmo Circadiano , Hipertensión/metabolismo , Túbulos Renales Distales/metabolismo , Natriuresis , Proteínas Circadianas Period/metabolismo , Eliminación Renal , Animales , Presión Sanguínea/genética , Ritmo Circadiano/genética , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Predisposición Genética a la Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Túbulos Renales Distales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Natriuresis/genética , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Fenotipo , Eliminación Renal/genética , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Factores de Tiempo , Regulación hacia Arriba
12.
Biophys J ; 113(4): 794-804, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28834716

RESUMEN

Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli ß-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the ß-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Escherichia coli/enzimología , Multimerización de Proteína , Electricidad Estática , ADN Polimerasa III/genética , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Mutación , Estabilidad Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Sales (Química)/farmacología
13.
Nucleic Acids Res ; 42(16): 10655-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25159615

RESUMEN

Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3'OH (3'DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3'DNA, fluorescent ß and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5'phosphate (5'P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5'DNA). The 5'P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3'DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5'DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3'DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , ARN/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
14.
Nucleic Acids Res ; 42(10): 6476-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24728995

RESUMEN

Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli ß and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli ß is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli ß dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.


Asunto(s)
ADN Polimerasa III/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , ADN Polimerasa III/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Multimerización de Proteína , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Fluorescencia
15.
Appl Environ Microbiol ; 80(20): 6427-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25107973

RESUMEN

A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives.


Asunto(s)
Lagenidium/genética , Lagenidium/patogenicidad , Filogenia , Transcriptoma , Factores de Virulencia/genética , Animales , Culicidae/microbiología , Proteínas Fúngicas/genética , Glucosiltransferasas/genética , Interacciones Huésped-Patógeno/genética , Datos de Secuencia Molecular
16.
Function (Oxf) ; 4(2): zqad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778748

RESUMEN

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.


Asunto(s)
Factores de Transcripción ARNTL , Presión Sanguínea , Relojes Circadianos , Conducta Alimentaria , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Encéfalo/metabolismo , Relojes Circadianos/genética , Corticosterona , Ratones Noqueados
17.
Cell Rep ; 42(1): 111982, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640301

RESUMEN

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Asunto(s)
Relojes Circadianos , Transcriptoma , Masculino , Animales , Ratones , Transcriptoma/genética , Ritmo Circadiano/genética , Relojes Circadianos/genética , Hipotálamo , Envejecimiento/genética , Envejecimiento/metabolismo
18.
J Invertebr Pathol ; 111(1): 13-9, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609409

RESUMEN

Distinct isolates of the invertebrate pathogenic alga Helicosporidium sp., collected from different insect hosts and different geographic locations, were processed to sequence the 18S rDNA and ß-tubulin genes. The sequences were analyzed to assess genetic variation within the genus Helicosporidium and to design Helicosporidium-specific 18S rDNA primers. The specificity of these primers was demonstrated by testing not only on the Helicosporidium sp. isolates, but also on two trebouxiophyte algae known to be close Helicosporidium relatives, Prototheca wickerhamii and Prototheca zopfii. The genus-specific primers were used to develop a culture-independent assay aimed at detecting the presence of Helicosporidium spp. in environmental waters. The assay was based on the PCR amplification of 18SrDNA gene fragments from metagenomic DNA preparations, and it resulted in the amplification of detectable products for all sampled sites. Phylogenetic analyses that included the environmental sequences demonstrated that all amplification products clustered in a strongly supported, monophyletic Helicosporidium clade, thereby validating the metagenomic approach and the taxonomic origin of the produced environmental sequences. In addition, the phylogenetic analyses established that Helicosporidium spp. isolated from coleopteran hosts are more closely related to each other than they are to the isolate collected from a dipteran host. Finally, the phylogenetic trees depicted intergeneric relationships that supported a Helicosporidium-Prototheca cluster but did not support a Helicosporidium-Coccomyxa grouping, suggesting that pathogenicity to invertebrates evolved at least twice independently within the trebouxiophyte green algae.


Asunto(s)
Chlorophyta/genética , ADN/genética , Metagenoma/genética , ADN de Algas/genética , ADN de Algas/aislamiento & purificación , Variación Genética , Filogenia
19.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104800

RESUMEN

The reality of life in modern times is that our internal circadian rhythms are often out of alignment with the light/dark cycle of the external environment. This is known as circadian disruption, and a wealth of epidemiological evidence shows that it is associated with an increased risk for cardiovascular disease. Cardiovascular disease remains the top cause of death in the United States, and kidney disease in particular is a tremendous public health burden that contributes to cardiovascular deaths. There is an urgent need for new treatments for kidney disease; circadian rhythm-based therapies may be of potential benefit. The goal of this Review is to summarize the existing data that demonstrate a connection between circadian rhythm disruption and renal impairment in humans. Specifically, we will focus on chronic kidney disease, lupus nephritis, hypertension, and aging. Importantly, the relationship between circadian dysfunction and pathophysiology is thought to be bidirectional. Here we discuss the gaps in our knowledge of the mechanisms underlying circadian dysfunction in diseases of the kidney. Finally, we provide a brief overview of potential circadian rhythm-based interventions that could provide benefit in renal disease.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Ritmo Circadiano , Hipertensión/fisiopatología , Nefritis Lúpica/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Animales , Humanos
20.
Hypertension ; 79(11): 2519-2529, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36093781

RESUMEN

BACKGROUND: Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied. Using male Dahl salt-sensitive (SS) rats with global knockout of PER1 (SSPer1-/-), we aim to test the hypothesis that PER1 plays a key role in the regulation of salt-sensitive blood pressure. METHODS: The model was generated using CRISPR/Cas9 and was characterized using radiotelemetry and measures of renal function and circadian rhythm. RESULTS: SSPer1-/- rats had similar mean arterial pressure when fed a normal 0.4% NaCl diet but developed augmented hypertension after three weeks on a high-salt (4% NaCl) diet. Despite being maintained on a normal 12:12 light:dark cycle, SSPer1-/- rats exhibited desynchrony mean arterial pressure rhythms on a high-salt diet, as evidenced by increased variability in the time of peak mean arterial pressure. SSPer1-/- rats excrete less sodium after three weeks on the high-salt diet. Furthermore, SSPer1-/- rats exhibited decreased creatinine clearance, a measurement of renal function, as well as increased signs of kidney tissue damage. SSPer1-/- rats also exhibited higher plasma aldosterone levels. CONCLUSIONS: Altogether, our findings demonstrate that loss of PER1 in Dahl SS rats causes an array of deleterious effects, including exacerbation of the development of salt-sensitive hypertension and renal damage.


Asunto(s)
Relojes Circadianos , Hipertensión , Enfermedades Renales , Animales , Masculino , Ratas , Presión Sanguínea/fisiología , Relojes Circadianos/genética , Hipertensión/genética , Hipertensión/metabolismo , Riñón/metabolismo , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratas Endogámicas Dahl , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/farmacología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA