Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 13(1): 3253, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828892

RESUMEN

Deep venous thrombosis and residual thrombus burden correlates with circulating IL-6 levels in humans. To investigate the cellular source and role of IL-6 in thrombus resolution, Wild type C57BL/6J (WT), and IL-6-/- mice underwent induction of VT via inferior vena cava (IVC) stenosis or stasis. Vein wall (VW) and thrombus were analyzed by western blot, immunohistochemistry, and flow cytometry. Adoptive transfer of WT bone marrow derived monocytes was performed into IL6-/- mice to assess for rescue. Cultured BMDMs from WT and IL-6-/- mice underwent quantitative real time PCR and immunoblotting for fibrinolytic factors and matrix metalloproteinase activity. No differences in baseline coagulation function or platelet function were found between WT and IL-6-/- mice. VW and thrombus IL-6 and IL-6 leukocyte-specific receptor CD126 were elevated in a time-dependent fashion in both VT models. Ly6Clo Mo/MØ were the predominant leukocyte source of IL-6. IL-6-/- mice demonstrated larger, non-resolving stasis thrombi with less neovascularization, despite a similar number of monocytes/macrophages (Mo/MØ). Adoptive transfer of WT BMDM into IL-6-/- mice undergoing stasis VT resulted in phenotype rescue. Human specimens of endophlebectomized tissue showed co-staining of Monocyte and IL-6 receptor. Thrombosis matrix analysis revealed significantly increased thrombus fibronectin and collagen in IL-6-/- mice. MMP9 activity in vitro depended on endogenous IL-6 expression in Mo/MØ, and IL-6-/- mice exhibited stunted matrix metalloproteinase activity. Lack of IL-6 signaling impairs thrombus resolution potentially via dysregulation of MMP-9 leading to impaired thrombus recanalization and resolution. Restoring or augmenting monocyte-mediated IL-6 signaling in IL-6 deficient or normal subjects, respectively, may represent a non-anticoagulant target to improve thrombus resolution.


Asunto(s)
Trombosis , Enfermedades Vasculares , Trombosis de la Vena , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Trombosis/metabolismo , Enfermedades Vasculares/metabolismo , Vena Cava Inferior/metabolismo , Trombosis de la Vena/genética
2.
Neuro Oncol ; 25(1): 54-67, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605606

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS: Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS: Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS: H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Humanos , Ratones , Encéfalo/patología , Neoplasias Encefálicas/genética , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular/genética , Glioma/genética , Histonas/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Mutación , Transducción de Señal
3.
JVS Vasc Sci ; 3: 246-255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647566

RESUMEN

Objective: Deep vein thrombosis (DVT) and its sequela, post-thrombotic syndrome (PTS), remain a clinically significant problem. Interleukin-6 (IL-6) is a proinflammatory cytokine that is elevated in patients who develop PTS. We hypothesized that genetic deletion of IL-6 and the use of anti-IL-6 pharmacologic agents would be associated with decreased late vein wall injury. Methods: Wild-type C57BL/6J (WT) and IL-6-/- mice underwent induction of stasis venous thrombosis by ligation of the infrarenal IVC. Vein wall inferior vena cava and thrombus were harvested at 21 days after ligation and analyzed by Western blot and immunohistochemistry of the vein wall using monocyte markers CCR2 and arginase 1, the endothelial marker CD31, and fibroblast markers DDR2 and FSP-1. Two anti-IL-6 pharmacologic agents (gp130 [glycoprotein 130] and tocilizumab) were tested and compared with low-molecular-weight heparin (LMWH) as the reference standard in WT mice. Plasma was collected at 4 and 48 hours to confirm the pharmacologic agents' effects. Results: Less fibrosis but no increase in luminal endothelialization was found in IL-6-/- mice compared with WT mice at 21 days. The IL-6-/- mice had fewer DDR2- and arginase 1-positive cells in the vein wall compared with the WT mice. However, no difference was found in the CCR2+ cells. Despite documented in vivo activity, exogenous gp130 and tocilizumab were not associated with decreased vein wall fibrosis or increased endothelial luminal coverage at 21 days. LMWH therapy, both before and after treatment, was not associated with decreased vein wall fibrosis at 21 days. Conclusions: IL-6 genetic deletion was associated with less fibrotic vein wall injury at a late time point, consistent with the PTS timeframe. However, neither the standard of care LMWH nor two available anti-IL-6 agents showed antifibrotic biologic effects in this model.

4.
Thromb Haemost ; 120(2): 289-299, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31887775

RESUMEN

Venous thrombosis (VT) resolution is a complex process, resembling sterile wound healing. Infiltrating blood-derived monocyte/macrophages (Mo/MΦs) are essential for the regulation of inflammation in tissue repair. These cells differentiate into inflammatory (CD11b+Ly6CHi) or proreparative (CD11b+Ly6CLo) subtypes. Previous studies have shown that infiltrating Mo/MΦs are important for VT resolution, but the precise roles of different Mo/MΦs subsets are not well understood. Utilizing murine models of stasis and stenosis inferior vena cava thrombosis in concert with a Mo/MΦ depletion model (CD11b-diphtheria toxin receptor [DTR]-expressing mice), we examined the effect of Mo/MΦ depletion on thrombogenesis and VT resolution. In the setting of an 80 to 90% reduction in circulating CD11b+Mo/MΦs, we demonstrated that Mo/MΦs are not essential for thrombogenesis, with no difference in thrombus size, neutrophil recruitment, or neutrophil extracellular traps found. Conversely, CD11b+Mo/MΦ are essential for VT resolution. Diphtheria toxoid (DTx)-mediated depletion after thrombus creation depleted primarily CD11b+Ly6CLo Mo/MΦs and resulted in larger thrombi. DTx-mediated depletion did not alter CD11b+Ly6CHi Mo/MΦ recruitment, suggesting a protective effect of CD11b+Ly6CLo Mo/MΦs in VT resolution. Confirmatory Mo/MΦ depletion with clodronate lysosomes showed a similar phenotype, with failure to resolve VT. Adoptive transfer of CD11b+Ly6CLo Mo/MΦs into Mo/MΦ-depleted mice reversed the phenotype, restoring normal thrombus resolution. These findings suggest that CD11b+Ly6CLo Mo/MΦs are essential for normal VT resolution, consistent with the known proreparative function of this subset, and that further study of Mo/MΦ subsets may identify targets for immunomodulation to accelerate and improve thrombosis resolution.


Asunto(s)
Lisosomas/metabolismo , Macrófagos/citología , Monocitos/citología , Trombosis/sangre , Trombosis de la Vena/sangre , Traslado Adoptivo , Animales , Antígenos Ly/metabolismo , Antígenos CD11/metabolismo , Separación Celular , Toxina Diftérica/farmacología , Ensayo de Inmunoadsorción Enzimática , Inflamación , Leucocitos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Fenotipo
5.
Endocrinology ; 156(4): 1372-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25590244

RESUMEN

Proopiomelanocortin (POMC)-derived peptides like α-melanocyte-stimulating hormone (MSH) substantially improve hepatic insulin sensitivity and regulate energy expenditure. Melanocortinergic agents are also powerful inducers of sexual arousal that are being investigated for a possible therapeutic role in erectile dysfunction. It is currently unclear whether reduced melanocortin (MC) activity may contribute to the sexual dysfunction accompanying obesity and type 2 diabetes. Male rodents with leptin and insulin resistance targeted to POMC neurons (leptin receptor [LepR]/insulin receptor [IR]POMC mice) exhibit obesity, hyperinsulinemia, hyperglycemia, and systemic insulin resistance. In this study, we demonstrate that LepR/IRPOMC males are also subfertile due to dramatic alterations in sexual behavior. Remarkably, these reproductive changes are accompanied by decreased α-MSH production not present when a single receptor type is deleted. Unexpectedly, behavioral sensitivity to α-MSH and MC receptor expression are also reduced in LepR/IRPOMC males, a potential adaptation of the MC system to altered α-MSH production. Together, these results suggest that concurrent insulin and leptin resistance in POMC neurons in individuals with obesity or type 2 diabetes can reduce endogenous α-MSH levels and impair sexual function.


Asunto(s)
Melanocortinas/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Leptina/metabolismo , Disfunciones Sexuales Fisiológicas/metabolismo , Agresión/fisiología , Animales , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptor de Insulina/genética , Receptores de Leptina/genética , Disfunciones Sexuales Fisiológicas/genética
6.
PLoS One ; 10(5): e0121974, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946091

RESUMEN

Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility.


Asunto(s)
Insulina/metabolismo , Kisspeptinas/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Pubertad/metabolismo , Transducción de Señal , Animales , Femenino , Fertilidad , Kisspeptinas/genética , Masculino , Ratones , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Maduración Sexual
7.
PLoS One ; 9(5): e96323, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24810249

RESUMEN

Peroxisome proliferator activated receptor gamma (PPARγ) controls both glucose metabolism and an allocation of marrow mesenchymal stem cells (MSCs) toward osteoblast and adipocyte lineages. Its activity is determined by interaction with a ligand which directs posttranscriptional modifications of PPARγ protein including dephosphorylation of Ser112 and Ser273, which results in acquiring of pro-adipocytic and insulin-sensitizing activities, respectively. PPARγ full agonist TZD rosiglitazone (ROSI) decreases phosphorylation of both Ser112 and Ser273 and its prolonged use causes bone loss in part due to diversion of MSCs differentiation from osteoblastic toward adipocytic lineage. Telmisartan (TEL), an anti-hypertensive drug from the class of angiotensin receptor blockers, also acts as a partial PPARγ agonist with insulin-sensitizing and a weak pro-adipocytic activity. TEL decreased S273pPPARγ and did not affect S112pPPARγ levels in a model of marrow MSC differentiation, U-33/γ2 cells. In contrast to ROSI, TEL did not affect osteoblast phenotype and actively blocked ROSI-induced anti-osteoblastic activity and dephosphorylation of S112pPPARγ. The effect of TEL on bone was tested side-by-side with ROSI. In contrast to ROSI, TEL administration did not affect bone mass and bone biomechanical properties measured by micro-indentation method and did not induce fat accumulation in bone, and it partially protected from ROSI-induced bone loss. In addition, TEL induced "browning" of epididymal white adipose tissue marked by increased expression of UCP1, FoxC2, Wnt10b and IGFBP2 and increased overall energy expenditure. These studies point to the complexity of mechanisms by which PPARγ acquires anti-osteoblastic and pro-adipocytic activities and suggest an importance of Ser112 phosphorylation status as being a part of the mechanism regulating this process. These studies showed that TEL acts as a full PPARγ agonist for insulin-sensitizing activity and as a partial agonist/partial antagonist for pro-adipocytic and anti-osteoblastic activities. They also suggest a relationship between PPARγ fat "browning" activity and a lack of anti-osteoblastic activity.


Asunto(s)
Bencimidazoles/farmacología , Benzoatos/farmacología , Huesos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , PPAR gamma/metabolismo , Animales , Antihipertensivos/farmacología , Huesos/citología , Huesos/metabolismo , Línea Celular , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , PPAR gamma/agonistas , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Telmisartán
8.
PLoS One ; 8(11): e79849, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278193

RESUMEN

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.


Asunto(s)
Andrógenos/metabolismo , Animales , Western Blotting , Ciclo Estral/fisiología , Femenino , Humanos , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovario/metabolismo , Síndrome del Ovario Poliquístico/metabolismo
9.
Endocrinology ; 154(3): 1337-48, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23392256

RESUMEN

Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.


Asunto(s)
Fertilidad/fisiología , Kisspeptinas/fisiología , Pubertad Tardía/fisiopatología , Receptor de Insulina/fisiología , Animales , Estradiol/análogos & derivados , Estradiol/farmacología , Retroalimentación Fisiológica , Femenino , Fertilidad/genética , Hormona Liberadora de Gonadotropina/fisiología , Insulina/fisiología , Kisspeptinas/deficiencia , Kisspeptinas/genética , Hormona Luteinizante/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/fisiología , Pubertad Tardía/genética , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Maduración Sexual/genética , Maduración Sexual/fisiología
10.
PLoS One ; 7(10): e48643, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119079

RESUMEN

Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC) mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC) mice showed reduced or absent ovulation. IR/LepR(POMC) mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC) mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC) mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.


Asunto(s)
Adipocitos/metabolismo , Modelos Animales de Enfermedad , Inflamación/genética , Síndrome del Ovario Poliquístico/genética , Adipocitos/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Glucemia/metabolismo , Femenino , Expresión Génica , Humanos , Hipertrofia , Inflamación/metabolismo , Interleucina-1beta/sangre , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/sangre , Interleucina-6/genética , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Ovario/metabolismo , Ovario/patología , Ovulación/genética , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/metabolismo , Embarazo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA